
Obstacle-Avoiding Path Existence Queries

in a Simple Polygon

By

Matthew Eastman

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Master of Computer Science

in

Computer Science

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario

May 23, 2014

c© Copyright

2014, Matthew Eastman

ii

Abstract

A fundamental problem in computational geometry is determining whether it is

possible to travel between two points in the plane while avoiding a set of obstacles. If

the obstacles are known in advance, they can be preprocessed so that path-existence

queries can be performed efficiently.

In this thesis, we consider a variation of the path-existence query problem where

each query contains an additional set of obstacles that must be avoided. We show

how to preprocess a simple polygon so that given a source and a destination within

that polygon, as well as a set of pairwise disjoint convex polygon or disk obstacles,

we can efficiently determine whether there is an obstacle-avoiding path between the

source and the destination.

iii

iv

Acknowledgements

I want to thank my supervisors Anil Maheshwari and Michiel Smid for their constant

support, encouragement, and invaluable advice.

I would also like to thank Vida Dujmović and Mark Lanthier for being on my

thesis committee, Sasanka Roy for sharing the problem tackled by my thesis with Anil,

and Paz Carmi and Carsten Grimm for helpful discussions during the 15th Korean

Workshop on Computational Geometry.

I am very grateful for the funding I received from the Natural Sciences and

Engineering Research Council of Canada, Carleton University, the School of Computer

Science, and the Computational Geometry Lab.

My time with the Computational Geometry Lab at Carleton was thoroughly

enjoyable. Prosenjit Bose, Vida Dujmović, Anil Maheshwari, Pat Morin, Michiel Smid,

as well as all of the students, postdoctoral fellows, and visitors, both past and present,

made the lab a welcoming and stimulating research environment.

Finally, I would like to thank my parents Gordon Eastman and Susan Eastman,

and my sister Sarah Eastman, for their love and support.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Preliminaries 5

3 Convex Polygon Obstacles 11

3.1 Shortest paths and path existence . 11

3.2 The augmented shortest path data structure 16

3.3 Obstacle-avoiding path existence queries 21

3.4 Reporting a path . 26

4 Disk Obstacles 27

4.1 The Voronoi diagram of a simple polygon 27

4.2 Hitting distance and path existence 31

4.3 The hitting distance Voronoi diagram 34

4.4 Obstacle-avoiding path existence queries 50

5 Conclusion 55

5.1 Contributions . 55

5.2 Future work . 56

Bibliography 59

vii

viii

List of Tables

1.1 Results on obstacle-avoiding path existence queries. Here, h denotes

the number of pairwise disjoint obstacles in the query and m =
∑h

i=1mi

denotes the total number of vertices in all polygonal obstacles, where

mi is the number of vertices in the ith obstacle. 3

ix

x

List of Figures

1.1 A set of disk obstacles that block all paths between s and t. 3

2.1 γ crosses α at c1 but reflects off of α at c2. 6

2.2 D2 ⊆ D1. 10

2.3 D2 ⊆ D1 ∪D2 and D2 \D3 ⊆ intD1. 10

3.1 π(s, t) contains three maximal spirals S1 = 〈x1, . . . , x6〉, S2 = 〈x5, . . . , x11〉,
and S3 = 〈x10, . . . , x16〉. 12

3.2 (i) π(s, t) does not contain a spiral; and (ii) π(s, t) contains degenerate

spirals. 13

3.3 ε-neighbourhoods around αL and αR that contain pieces of obstacle-

avoiding paths between xi and xj. 15

3.4 The clockwise chain of ∂O between pL and pR is a curve separating s

from t. 15

3.5 Constructing a polygon from a polygonal chain. 17

3.6 (i) An open hourglass; and (ii) a closed hourglass. The shaded areas

show the regions of the polygon that can contain part of a shortest

path that passes through both d1 and d2. 19

3.7 The concatenation of two hourglasses. 20

3.8 The possible types of components of π(s, t) ∩ ∂O. 23

3.9 The ways in which π(s, t) can intersect an edge of O if π(s, t) intersects

that edge at least three times. 24

4.1 The Voronoi diagram of a set of points. 28

4.2 The Voronoi diagram of a simple polygon. 28

4.3 The images of four Voronoi edges e1, e2, e3 and e4. 30

4.4 A path between s and t in V(P). 30

4.5 If αL ∩ ∂P 6= ∅ then d(c, pL) ≤ r and d(c, pR) ≤ r. 33

xi

4.6 The hitting distance bisector Bh(s2, s4) of the two sites s2 and s4
associated with the edges e2 and e4 of the Voronoi path shown in

Figure 4.4. 36

4.7 The bisectors that make up Bh(s2, s4). The shaded regions indicate

which pieces of these bisectors end up forming Bh(s2, s4), shown in

Figure 4.6. 37

4.8 The Euclidean bisector of IR(ei) and IR(ej) and the hitting distance

bisector of si and sj. 38

4.9 The Euclidean bisector of IR(ei) and IR(ej) and the hitting distance

bisector of si and sj. Both bisectors contain 2-dimensional regions,

shown in grey. 39

4.10 A hitting distance bisector that consists entirely of a 2-dimensional

region. 40

4.11 The chosen hitting distance bisector of sites si and sj in Figure 4.9 if

si ≺ sj (left) or if sj ≺ si (right). 41

4.12 A path satisfying conditions (i) and (ii) of Lemma 4.5 when IR(ei) is a

line segment and x ∈ strip(IR(ei)). 42

4.13 A path satisfying conditions (i) and (ii) of Lemma 4.5 when IR(ei) is a

line segment and x /∈ strip(IR(ei)). 43

4.14 A path satisfying conditions (i) and (ii) of Lemma 4.5 when IR(ei) is a

reflex vertex and xp intersects ei. 44

4.15 A path satisfying conditions (i) and (ii) of Lemma 4.5 when IR(ei) is a

reflex vertex and xp does not intersect ei. 45

4.16 Rh(si, sj) is unbounded when Hi contains a point p in an element of si. 46

4.17 Rh(si, sj) is unbounded when si is a single-vertex site and Hi does not

contain part of an element of si. 47

4.18 Proof of Lemma 4.10 when si is a vertex-vertex site and Hi does not

contain part of an element of si. 48

4.19 The hitting distance Voronoi diagram of the sites corresponding to the

edges of a path between s and t in V(P). 49

4.20 Groups G1, . . . , G6 contain the vertices of a path between s and t in

V(P). 52

xii

List of Algorithms

4.1 Single disk obstacle-avoiding path existence query. 53

xiii

xiv

Chapter 1

Introduction

A fundamental problem in computational geometry is determining whether it is

possible to travel from one point in the plane to another while avoiding a set of

obstacles.

If the obstacles are polygons then we can determine whether there is an obstacle-

avoiding path between two points by computing the union of the obstacles in O(n2) time

and constructing a point location data structure on the resulting planar subdivision.

There is an obstacle-avoiding path between the two points if and only if both points

lie in the same face of this subdivision, and that face is not contained in an obstacle.

The union of a set of polygons with n vertices in total has complexity O(n2), so the

resulting data structure has size O(n2) and can be constructed in O(n2) time [39, 44, 8].

Checking if the query points are located in the same region of the planar subdivision

can be done in O(log n) time [39, 44].

A related problem is the Euclidean shortest path problem, which asks for the

shortest obstacle-avoiding path between two points in the plane. A well-studied version

of this problem asks for a shortest path between two points that is contained in a given

polygon. If the polygon has n vertices and is simple, meaning it does not self-intersect

or contain holes, Lee and Preparata showed that the shortest path between the points

that avoids the exterior of the polygon can be found in O(n) time [35]. Hershberger

and Suri gave an optimal O(n log n) time algorithm for polygons with holes [27]. We

refer the reader to the survey on shortest paths by Mitchell [37] for more details.

Query versions of shortest path problems have received considerably less attention.

In the polygonal two-point shortest path query problem, we want to preprocess a given

polygon into a data structure so that the shortest path between two given points in

that polygon can be found efficiently. Guibas and Hershberger showed that a simple

1

2 CHAPTER 1. INTRODUCTION

polygon can be preprocessed in O(n) time so that the shortest path can be found in

O(log n + k) time, where k is the number of turns made by the shortest path [22].

This problem becomes much more difficult when the polygon has holes. If the polygon

contains h holes then n is the total number of vertices on the boundary of the polygon,

including the vertices of the holes. The only data structure that achieves optimal

O(log n+ k) query time has size O(n11) [15]. There are several algorithms and data

structures that trade query time for preprocessing time and space. Notably, Chiang

and Mitchell showed that if the polygon contains h holes then it can be preprocessed

in O(n+ h5) time into a data structure of size O(n+ h5) that supports O(h log n+ k)

time shortest path queries [15]. Guo et al. showed that O(h log n+ k) time queries

can also be achieved with an O(n2) size data structure that can be constructed in

O(n2 log n) time [23]. The recent survey by Chen [12] includes more details on shortest

path query problems.

In the situations described above, the set of obstacles that must be avoided is fixed.

There has been a significant amount of research conducted on finding shortest paths

in dynamic environments, especially in the field of motion planning [33], but relatively

little research has focused on computing data structures for path existence or shortest

path queries in dynamic environments. The only results we know of are the dynamic

point location and shortest path data structures of Chiang et al. [29] and Goodrich

and Tamassia [21]. Given a planar subdivision, it is possible to construct a dynamic

data structure on that subdivision that supports O(log2 n) time point location queries

and shortest path queries, that can be updated in O(log2 n) time, where an update

consists of adding an edge to the planar subdivision.

In this thesis, we consider a variation of the two-point path query problem where,

in addition to a source s and a destination t, we are given a set of obstacles that must

be avoided. It is possible for these obstacles to block all possible paths between s and

t, as in Figure 1.1, so we are concerned with whether there is an obstacle-avoiding

path between the source and destination. Specifically, we show how to preprocess a

simple polygon P so that, given two points s and t inside P, and a set of pairwise

disjoint convex polygon or disk obstacles, we can efficiently determine whether there

is an obstacle-avoiding path between s and t. A summary of our results is presented

in Table 1.1.

The remainder of this thesis is organized as follows. The following chapter includes

several definitions and results that will be used throughout this thesis. Importantly,

we show that each obstacle can be considered separately, and that we may assume

that the query points are vertices of the polygon.

3

s

t

Figure 1.1: A set of disk obstacles that block all paths between s and t.

In Chapter 3, we consider obstacles that are convex polygons. We show how to

augment the shortest path query data structure of Guibas and Hershberger [22] so

that it can be used to answer obstacle-avoiding path existence queries.

In Chapter 4 we show how to perform obstacle-avoiding path existence queries

when the obstacles are disks. We introduce a distance function that we refer to as

the hitting distance and show that, by constructing a Voronoi diagram of a set of

sites under this distance function, we can efficiently answer obstacle-avoiding path

existence queries for disk obstacles.

In Chapter 5 we summarize the contributions of this thesis and suggest possible

directions for future work.

Obstacles Preprocessing Size Query

Pairwise disjoint convex polygons O(n log n) O(n log n) O(m log2 n)

Pairwise disjoint disks O(n2 log n) O(n2) O(h log n)

Pairwise disjoint disks O(n log2 n) O(n log n) O(h log3 n)

Table 1.1: Results on obstacle-avoiding path existence queries. Here, h denotes the number

of pairwise disjoint obstacles in the query and m =
∑h

i=1mi denotes the total number of

vertices in all polygonal obstacles, where mi is the number of vertices in the ith obstacle.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

Let P be a simple polygon with n vertices. We consider P to be a closed and bounded

(compact) subset of R2. Let p and q be points in P . A path between p and q in P is a

non-self-intersecting (simple) curve with endpoints p and q. Let Q = {O1, . . . ,Oh} be

a set of compact convex subsets of R2. We refer to each element Oi, 1 ≤ i ≤ h, as

an obstacle and we say that a path γ between s and t is an obstacle-avoiding path if

γ ⊆ P \⋃Oi∈QOi.
Let xy denote a line segment with endpoints x and y and let 〈x1, . . . , xk〉 denote a

polygonal chain with vertices x1, . . . , xk and edges xixi+1, 1 ≤ i < k. Let ∂P denote

the boundary of P and let intP denote its interior. Let x and y be points on ∂P . If

xy ⊆ P and xy only intersects the boundary of P at x and y then xy is a chord in P .

If x and y happen to be vertices of P then xy is a diagonal in P . Let 〈x1, . . . , xn, x1〉
be the closed polygonal chain that forms the boundary of P, with vertices given in

clockwise order. Given two vertices xi and xj of P, the directed clockwise chain of

∂P from xi to xj is

PRxixj =

{
〈xi, . . . , xj〉 if i < j,

〈xi, . . . , xn, x1, . . . , xj〉 if j < i;

and the counter-clockwise chain is

PLxixj =

{
〈xi, xi−1, . . . , x1, xn, xn−1, . . . xj〉 if i < j,

〈xi, xi−1, . . . , xj〉 if j < i.

Let γ be a simple curve with endpoints x and y. If we parameterize γ by a bijection

f : [0, 1]→ γ such that f(0) = x and f(1) = y then, given points p, q ∈ γ, we say that

p ≺γ q if f−1(p) < f−1(q).

5

6 CHAPTER 2. PRELIMINARIES

Separating curves

Let α be a curve that is homeomorphic to either a line or a circle and let γ be a simple

curve. Let R1 and R2 be the open regions of the plane on either side of α. Assume

that γ ∩ α 6= ∅ and let c be a connected component of γ ∩ α. We say that γ crosses

α at c if, for every value ε > 0, there exist points x1, x2 ∈ γ in the ε-neighbourhood

U ε =
⋃
x∈c intD(x, ε) around c such that x1 ∈ R1 and x2 ∈ R2. See component c1

in Figure 2.1. Otherwise, we say that γ reflects off of γ at c. See component c2 in

Figure 2.1.

c1

R1 R2

c2

Uε
c1

Uε
c2

γ

α

x1

x2

Figure 2.1: γ crosses α at c1 but reflects off of α at c2.

Let γ be a simple curve with endpoints x and y on the boundary of P such that

γ ⊆ P . We say that γ separates s from t if γ splits P into two regions R1 and R2

with common boundary γ such that s ∈ R1 and t ∈ R2. If γ separates s from t then

every path between s and t in P must cross from R1 to R2 by passing through γ. Let

Oi be an obstacle in Q. We can determine whether there is a path between s and t

that avoids Oi by checking if there is a curve γ ⊆ Oi that separates s from t.

Lemma 2.1. Let s and t be vertices of P. There is an obstacle-avoiding path between

s and t if and only if there is no simple curve γ separating s from t such that γ ⊆ Oi.
Proof. If there is no curve γ ⊆ Oi separating s from t then s /∈ Oi and t /∈ Oi.
Consider the overlay of ∂P and ∂Oi. Both s and t must belong to the boundary of a

face F ⊆ P in this overlay, otherwise P is not a simple polygon, or there is an edge

in this overlay that is a curve in Oi separating s from t. Since the interior of P is

path connected and the clockwise and counter-clockwise arcs of the boundary of F

cannot intersect, there is a path between s and t in F that only intersects ∂F at s

and t. Therefore, there is a path between s and t in P \ Oi.

7

Suppose that there is a curve γ ⊆ Oi separating s from t. Let R1 and R2 be the

regions of P split by γ that contain s and t, respectively. Every path between s and t

in P must cross from R1 to R2 by passing through γ, so every path between s and t

intersects Oi. Therefore, there cannot be a path between s and t in P \ Oi.

Observe that a closed simple curve γ ⊆ P separates s from t if and only if there

exist points x ∈ γ and y ∈ γ such that x ∈ PRst and y ∈ PLst, otherwise both s and t

are contained in the same region R ⊆ P that results from splitting P along γ, which

implies that there is a path between s and t in R that avoids γ.

Queries with multiple obstacles

The following result shows that each obstacle can be considered independently.

Lemma 2.2. Let s and t be points in P and let {O1, . . . ,Oh} be a set of h pairwise

disjoint convex obstacles. There is an obstacle-avoiding path between s and t if and

only if, for each obstacle Oi, 1 ≤ i ≤ h, there is a path between s and t in P \ Oi.

Proof. If there is a path that avoids each obstacle individually then by Lemma 2.1

there is no obstacle Oi, 1 ≤ i ≤ h, that contains a curve separating s from t. Since the

obstacles are pairwise disjoint, there cannot be a curve separating s and t contained

in
⋃

1≤i≤hOi either, so there must be an obstacle-avoiding path between s and t.

Throughout the rest of this thesis, unless otherwise stated, we only consider queries

that contain a single obstacle O. If O is a polygon then we let m be the number of

vertices in O.

Query points are vertices

The following result shows that we only need to consider queries consisting of points

that are vertices of P .

Lemma 2.3. Let p be a point in P \ O. There exists a vertex v of P such that

pv ⊆ P \ O.

Proof. Let T be a triangulation of P and let 4xyz be a triangle in T , with vertices x,

y, and z, that contains p. We claim that one of px, py, or pz is contained in P \ O.

Assume this is not the case. Then there exist points x′, y′ and z′ in px, py, and

pz, respectively, such that x′, y′, z′ ∈ O. Then p is contained in the triangle 4x′y′z′,
which, by the convexity of O, is a subset of O, implying that p ∈ O, which is a

contradiction.

8 CHAPTER 2. PRELIMINARIES

Corollary 2.4. Let s and t be points in P. There exist vertices s′ and t′ of P such

that there is an obstacle-avoiding path between s and t if and only if there is an

obstacle-avoiding path between s′ and t′.

Proof. By Lemma 2.3, there exist vertices s′ and t′ such that ss′ ⊆ P \ O and

tt′ ⊆ P \ O. Let γ be an obstacle-avoiding path between s and t. Then ss′ ∪ γ ∪ tt′
contains an obstacle-avoiding path between s′ and t′. Using the same argument, if

we have an obstacle-avoiding path δ between s′ and t′ then ss′ ∪ δ ∪ tt′ contains an

obstacle-avoiding path between s and t.

The proof of Lemma 2.3 shows how to find suitable vertices s′ and t′. Given a

triangulation T of P, find a triangle 4xyz in T that contains s and check whether

sx, sy, or sz intersect O. By Lemma 2.3, at least one of these segments avoids O, so

we can take s′ to be the endpoint of an arbitrary segment that avoids O. The same

can be done to find a suitable vertex t′. A triangulation of P can be constructed in

O(n) time P [11] and a point-location data structure on that triangulation can be

constructed in O(n) time as well [39, 44, 8]. If O is a convex polygon with m vertices

then we can check if a line segment intersects O in O(logm) time. If O is a disk then

this check can be performed in O(1) time. Throughout the rest of this thesis we only

consider queries such that the source s and destination t are vertices of P .

Properties of intersecting disks

We now prove some properties of intersecting disks that will be useful in Chapter 4.

Let px and py denote the x- and y-coordinates of a point p ∈ R2, respectively, and let

D(c, r) denote the disk of radius r centered at a point c ∈ R2. We consider a disk to

be a compact subset of R2.

Lemma 2.5. Let D1 = D(c1, r1) and D2 = D(c2, r2) be disks such that ∂D1 ∩ ∂D2

consists of a single point p, and c2 ∈ c1p. Then D2 ⊆ D1.

Proof. Let q be a point in D2. Refer to Figure 2.2. Then,

d(c1, q) ≤ d(c1, c2) + d(c2, q)

≤ d(c1, c2) + d(c2, p)

= d(c1, p)

= r1.

Therefore, q ∈ D1 and D2 ⊆ D1.

9

Lemma 2.6. Let D1 = D(c1, r1) and D2 = D(c2, r2) be disks such that ∂D1 ∩ ∂D2

consists of two points p1 and p2. Assume that c1x < c2x and c1y = c2y so that p1x = p2x.

Let L be the line passing through p1 and p2. Let q be a point in D1 lying on or to the

right of L. Then q ∈ D2.

Proof. We may assume that L passes through the origin, so that p1x = p2x = 0, and

that c1 and c2 lie on the x-axis, so that c1y = c2y = 0. Let q be a point in D1 lying to

the right of L. Then

d(c1, q) ≤ d(c1, p1)

d(c1, q)
2 ≤ d(c1, p1)

2

(c1x − qx)2 + q2y ≤ c21x + p21y

c21x − 2c1xqx + q2x + q2y ≤ c21x + p21y

−2c1xqx + q2x + q2y ≤ p21y.

Since c1x < c2x and qx ≥ 0, we have−2c2xqx ≤ −2c1xqx. Thus, −2c2xqx + q2x + q2y ≤ p21y,

which implies that d(c2, q) ≤ d(c2, p1) and that q ∈ D2.

Lemma 2.7. Let D1 = D(c1, r1), D2 = D(c2, r2) and D3 = D(c3, r3) be disks such

that c2 ∈ c1c3 and ∂D1 ∩ ∂D2 ∩ ∂D3 consists of two points p1 and p2. Then

(i) D2 ⊆ D1 ∪D2; and

(ii) D2 \D3 ⊆ intD1.

Proof. We may assume that c1, c2 and c3 lie on a horizontal line and that c1x < c2x < c3x.

Let L be the line passing through p1 and p2. Refer to Figure 2.3.

(i) Let q be a point in D2. By Lemma 2.6, if q lies on or to the left of L, then q ∈ D1,

and if q lies on or to the right of L, then q ∈ D3. Therefore, D2 ⊆ D1 ∪D3.

(ii) Let q be a point in ∂D1 ∩ D2. Then q lies on or to the right of L and by

Lemma 2.6, q ∈ D3. Therefore, since D2 \ D3 lies strictly to the left of L,

D2 \D3 ⊆ intD1.

10 CHAPTER 2. PRELIMINARIES

c1

D1

D2

c2

p

Figure 2.2: D2 ⊆ D1.

c1

D1

c3

D3

c2

D2 p1

p2

L

c1

D1

c3

D3

c2

D2 p1

p2

L

Figure 2.3: D2 ⊆ D1 ∪D2 and D2 \D3 ⊆ intD1.

Chapter 3

Convex Polygon Obstacles

In this chapter, we show how to preprocess a simple polygon P with n vertices into

a data structure of size O(n log n) so that, given two vertices s and t of P, and a

convex polygon obstacle O containing m vertices, we can determine whether there is

an obstacle-avoiding path between s and t in O(m log2 n) time.

The general idea is to walk along the shortest path from s to t. Whenever we run

into O, we try to take a detour around O by walking along the boundary of O until

either we meet the boundary of P, or we rejoin the shortest path. If we can rejoin

the shortest path by walking either clockwise or counter-clockwise around O then we

continue walking towards t. If we meet the boundary of P in both directions then

there is no obstacle-avoiding path between s and t.

In Section 3.1 we describe the shortest path between s and t and show how it can

be used to perform obstacle-avoiding path existence queries. Section 3.2 shows how to

augment the shortest path data structure of Guibas and Hershberger [22] in order to

find the connected components of π(s, t) ∩ O and Section 3.3 describes how to use

these connected components to perform an obstacle-avoiding path existence query.

Finally, in Section 3.4 we show how to find an obstacle-avoiding path between s and t

if such a path exists.

3.1 Shortest paths and path existence

Let P be a simple polygon of size n. Let O be a convex polygon obstacle of size m

and let s and t be vertices of P. The Euclidean shortest path between two points

p and q in P, denoted by π(p, q), is the path of minimum length between p and q.

It is well known that π(p, q) is a unique polygonal chain that turns only at reflex

11

12 CHAPTER 3. CONVEX POLYGON OBSTACLES

vertices of P [22]. The geodesic distance between p and q is the length of the shortest

path between p and q. We treat π(p, q) as a directed path from p to q so that we can

define an ordering ≺π(p,q) on the points of π(p, q) so that for any two points x and y in

π(p, q), x ≺π(p,q) y if the geodesic distance between p and x is less than the geodesic

distance between p and y.

Let 〈x1, . . . , xk〉 be the ordered sequence of vertices of P in π(s, t), where x1 = s

and xk = t. We say that a subchain S = 〈xi, . . . , xj〉 of π(s, t) is a spiral if it makes

only left, or only right, turns. Specifically, S is a left- (resp. right-) spiral if, for all

` < i− 2, x`+2 lies on or to the left (resp. right) of the directed line from x` through

x`+1. A spiral S = 〈xi, . . . , xj〉 is called maximal if we cannot obtain a larger spiral by

prepending xi−1 or appending xj+1 to S. If S is a maximal right-spiral in π(s, t) then

xi, xj ∈ PRst and, for all i < ` < j, x` ∈ PLst. Symmetrically, if S is a maximal left-spiral

in π(s, t) then xi, xj ∈ PLst and, for all i < ` < j, x` ∈ PRst. Figure 3.1 shows a shortest

path π(s, t) that contains three maximal spirals, S1 = 〈x1, . . . , x6〉, S2 = 〈x5, . . . , x11〉,
and S3 = 〈x10, . . . , x16〉.

x1 = s x6

x10

x16 = t

x5

x11
π(s, t)

P

Figure 3.1: π(s, t) contains three maximal spirals S1 = 〈x1, . . . , x6〉, S2 = 〈x5, . . . , x11〉,
and S3 = 〈x10, . . . , x16〉.

There are two degenerate cases to consider in which π(s, t). The first case occurs

when π(s, t) consists of a single line segment st. In this case, π(s, t) does not contain

a spiral. To handle this case, we add the midpoint of s and t to π(s, t) and say that

π(s, t) = 〈s, s+t
2
, t〉 is a right-spiral. See Figure 3.2(i). The second degenerate case is

when π(s, t) contains a sequence X of at least three collinear vertices of π(s, t). If

every vertex in X belongs to the same chain of ∂P , then we say that X is a left-spiral

3.1. SHORTEST PATHS AND PATH EXISTENCE 13

if those vertices are on PRst and that X is a right-spiral if the vertices belong to PLst.
Otherwise X can be split into a set of subchains S such that, for each subchain

S = 〈xi, . . . , xj〉 in S, xi, xj ∈ PLst and x` ∈ PRst, for all i < ` < j, and we say that S is

a right-spiral, or xi, xj ∈ PRst and x` ∈ PRst, for all i < ` < j, and we say that S is a

left-spiral. In Figure 3.2(ii), the shortest path between s and t is made up of three

maximal spirals: two maximal right-spirals, 〈x1, x2, x3〉 and 〈x3, x4, x5, x6〉; and one

maximal left-spiral, 〈x2, x3, x4〉. We may now assume that π(s, t) contains at least

three vertices and at least one spiral.

s

t

s+t
2

(i)

x1 = s

x6 = t

x2

x3

x4

x5

(ii)

Figure 3.2: (i) π(s, t) does not contain a spiral; and (ii) π(s, t) contains degenerate spirals.

It is possible to decompose π(s, t) into a sequence of O(k) maximal spirals S1, . . . , S`.

Adjacent maximal spirals Si and Si+1 overlap in exactly two vertices, meaning there

is an edge of π(s, t) shared by Si and Si+1. If Si is a left- (resp. right-) spiral then

Si+1 must be a right- (resp. left-) spiral, otherwise Si and Si+1 are not maximal. In

Figure 3.1, S1 and S3 are right-spirals and S2 is a left-spiral. S1 shares vertices x5 and

x6 with S2, and S2 shares vertices x10 and x11 with S3.

The following property of maximal spirals will be useful when we show how to

determine if there is an obstacle-avoiding path.

Lemma 3.1. Let S = 〈xi, . . . , xj〉 be a maximal spiral in π(s, t). If xi ∈ O and

xi+1 ∈ O, or xj−1 ∈ O and xj ∈ O, then there cannot be an obstacle-avoiding path

between s and t.

Proof. Assume that both xi and xi+1 are contained in O and that S is a right-spiral.

If xi = s then clearly there cannot be an obstacle-avoiding path between s and t,

so we may assume that xi 6= s. Since S is a right-spiral, xi ∈ PRst and xi+1 ∈ PLst.
Then xixi+1 is a chord in P that separates s from t. Due to the convexity of O,

xixi+1 ⊆ O. Therefore, there cannot be an obstacle-avoiding path between s and t.

14 CHAPTER 3. CONVEX POLYGON OBSTACLES

By a similar argument, if both xj−1 and xj are contained in O then there cannot be

an obstacle-avoiding path between s and t.

Corollary 3.2. Let c be a connected component of π(s, t)∩O. If there is no maximal

spiral S = 〈xi, . . . , xj〉 in π(s, t) such that c ⊆ S \ {xi, xj} then there is no obstacle-

avoiding path between s and t.

Proof. If this is not the case then there must be a maximal spiral Sa in the sequence

of maximal spirals that make up π(s, t) such that c contains either the edge of π(s, t)

shared by Sa and Sa−1 or the edge of π(s, t) shared by Sa and Sa+1. Then, by

Lemma 3.1, there cannot be an obstacle-avoiding path between s and t.

It immediately follows from Corollary 3.2 that, for each connected component c of

π(s, t) ∩ O, if there is no spiral S = 〈xi, . . . , xj〉 in π(s, t) that contains c such that

xi /∈ c and xj /∈ c then there is no obstacle-avoiding path between s and t. We now

consider how to determine if there is an obstacle-avoiding path between the endpoints

of a spiral S in π(s, t) if S ∩O consists of a single connected component c such that c

does not contain either endpoint of S.

Lemma 3.3. Let c be a connected component of π(s, t) ∩ O. Suppose that there is a

spiral S = 〈xi, . . . , xj〉 in π(s, t) that contains c such that xi /∈ c and xj /∈ c. We may

assume that S is the shortest spiral satisfying these constraints so that c ∩ xixi+1 6= ∅
and c ∩ xj−1xj 6= ∅. Let y and z be the endpoints of c such that y ≺π(s,t) z and let

αR and αL be the clockwise and counter-clockwise chains of ∂O with endpoints y and

z, respectively. There is an obstacle-avoiding path between xi and xj if and only if

αR ∩ PRst = ∅ or αL ∩ PLst = ∅.

Proof. Without loss of generality, assume that S is a right-spiral. If αL ∩PLst = ∅ then

y, z ∈ intP, xi and xj are adjacent vertices of S, and y, z ∈ xixj. For a sufficiently

small value of ε, there exists an ε-neighbourhood U ε
αL

=
⋃
y∈αL

intD(y, ε) around αL
such that U ε

αL
⊆ intP . Refer to Figure 3.3. Let y′ and z′ be points in xiy ∩ U ε

αL
\ O

and xjz ∩ U ε
αL
\ O, respectively. Let γ be a path between y′ and z′ in U ε

αL
\ O. Then

xiy′ ∪ γ ∪ xjz′ is an obstacle-avoiding path between xi and xj.

A similar argument can be applied to the case where αR ∩ PRst = ∅. If this is the

case, there exists an ε-neighbourhood U ε
αR

=
⋃
y∈αR

intD(y, ε) around αR such that

U ε
αL
∩ P \ O ⊆ P and there is an obstacle-avoiding path between xi to xj that passes

through U ε
αL
∩ P \ O ⊆ P . Refer to Figure 3.3.

If αR ∩ PRst 6= ∅ and αL ∩ PLst 6= ∅ then when we walk along αL from y we must

first meet ∂P at a point pL on PLst, and if we walk along αR from y, then, ignoring

3.1. SHORTEST PATHS AND PATH EXISTENCE 15

αR

αL

y z
xi

UεαL

xj

αR

αL

UεαR

y

z

xi

xj

Figure 3.3: ε-neighbourhoods around αL and αR that contain pieces of obstacle-avoiding

paths between xi and xj .

y if it is on ∂P, we first meet ∂P at a point pR on PRst. This follows from the fact

that O is convex and S makes only right turns. Refer to Figure 3.4 The union of the

arc of αR between y and pR and the arc of the curve of αL between y and pL is a

curve separating s from t so by Lemma 2.1 there cannot be an obstacle-avoiding path

between s and t.

αR

αL

pL = y

z

xi

xj

pR

Figure 3.4: The clockwise chain of ∂O between pL and pR is a curve separating s from t.

We now describe the general idea of how to determine whether there is an obstacle-

avoiding path between s and t. Walk from s towards t along π(s, t). If we do not hit

O then π(s, t) is an obstacle-avoiding path between s and t. Otherwise, we meet O
at a connected component c of π(s, t) ∩ O. If there is no spiral S in π(s, t) such that

c ⊆ S then, by Lemma 3.2, there cannot be an obstacle-avoiding path between s and t,

and we must meet PRst and PLst when walking around O from the endpoint of c closest

16 CHAPTER 3. CONVEX POLYGON OBSTACLES

to s in the clockwise and counter-clockwise directions, respectively, before reaching the

other endpoint of c. If there is a spiral S = 〈xi, . . . , xj〉 such that c ⊆ S \ {xi, xj} then

we may assume that S is the shortest spiral such that xi, xj /∈ O, and by Lemma 3.3,

we can check if there is a path between xi and xj that avoids O by walking around

the boundary of O in the clockwise and counter-clockwise directions. If we cannot

walk around O then there cannot be an obstacle-avoiding path between s and t.

Since c is the first component encountered on our walk from s to t, π(s, xi) does not

intersect O, so if there is an obstacle-avoiding path between xi and xj then there

is an obstacle-avoiding path between s and xj. If this is the case then there is an

obstacle-avoiding path between s and t if and only if there is an obstacle-avoiding

path between xj and t, so by recursively solving this subproblem we can determine if

there is an obstacle-avoiding path between s and t.

Thus, in order to determine whether there is an obstacle-avoiding path between s

and t, we must first find the connected components of π(s, t) ∩ O.

3.2 The augmented shortest path data structure

In this section, we modify the shortest path data structure of Guibas and Hersh-

berger [22] so that, given a line segment uv, the I connected components of π(s, t)∩uv
can be found in O(I log2 n) time. In Section 3.3 we show how this data structure can

be used to find the connected components of π(s, t) ∩O. We start by showing how to

compute the intersections between a line segment and a polygonal chain.

Lemma 3.4. Let S = 〈x1, . . . , x`〉 be a polygonal chain. It is possible to preprocess S

in O(`) time into a data structure of size O(`) so that, given a line segment uv, the I

intersections between S and e can be found in O(I log `) time.

Proof. We can construct a polygon PS from S as follows. Double the edges of the

polygonal chain to obtain a polygon S ′ with boundary 〈x1, . . . , x`−1, x`, x`−1, . . . , x1〉.
Take any axis-parallel rectangle R that contains S ′ in its interior and treat S ′ as a

hole in R to obtain a polygon R′. Let xi be a leftmost vertex of S ′. Take the leftmost

point r on ∂R with the same y-coordinate as xi and carve a passage from r to xi to

obtain a polygon PS without any holes. See Figure 3.5. We may pretend that the

crack in PS has thickness ε so that PS is a simple polygon.

Next we construct a ray shooting data structure on S ′. The ray-shooting data

structure of Hershberger and Suri has size O(`), can be constructed in O(`) time,

and allows us to perform a ray shooting query in O(log `) time [26]. If there are I

3.2. THE AUGMENTED SHORTEST PATH DATA STRUCTURE 17

intersections between S and uv then we can find them in O(I log `) time by performing

I + 1 ray shooting queries.

Figure 3.5: Constructing a polygon from a polygonal chain.

Let S = 〈x1, . . . , x`〉 be a spiral. We say that S is a semi-convex chain if the direc-

tion of the chain changes monotonically within an open 360◦ interval [24]. Informally,

a polygonal chain is semi-convex if when we walk around it, we turn in one direction

only, and we turn less than 360◦ in total. We represent a semi-convex chain S as

a balanced binary tree TS using Hershberger’s data structure [24], which stores the

edges of S in the leaves of TS. Each internal node v of TS stores the common vertex

of the two subchains represented by the subtrees of the children of v. Since convex

chains are easier to reason about, we start by showing that a semi-convex chain can

be split into two convex chains.

Lemma 3.5. Let S = 〈x1, . . . , x`〉 be a semi-convex chain containing at least three

vertices. There is a vertex xi, 1 < i < `, such that both 〈x1, . . . , xi〉 and 〈xi, . . . , x`〉
are convex chains.

Proof. Without loss of generality, assume that S makes only left turns. Let i+ 1 be

the first index such that 〈xi+1, x1, x2〉 makes a right turn instead of a left turn (if there

is no such index then the chain is convex and any index 1 < j < ` splits the chain into

two convex chains). Then 〈x1, . . . , xi〉 is a convex chain. We claim that 〈xi, . . . , x`〉
is also convex. Assume it is not. Then 〈x`, xi, xi+1〉 makes a right turn. Since xi+1

lies to the right of the directed line from x1 through x2, and also to the right of the

directed line from x` through xi, the chain must turn more than 360◦ in total, which

contradicts the fact that S is a semi-convex chain.

We can compute the intersections between a semi-convex chain and a line segment

without having to construct a ray shooting data structure on the semi-convex chain.

18 CHAPTER 3. CONVEX POLYGON OBSTACLES

Lemma 3.6. Let S = 〈x1, . . . , x`〉 be a semi-convex chain and let TS be a tree

representing S. Let uv be a line segment. The connected components of S ∩ uv can be

computed in O(log `) time.

Proof. Without loss of generality, assume that S makes only left turns. By Lemma 3.5,

if S is not convex then there is at least one vertex xi that splits S into two convex

chains. We can find such a vertex in O(log `) time using binary search, as follows.

Let xi be the vertex stored at the root of TS. If both 〈x1, . . . , xi〉 and 〈xi, . . . , x`〉 are

convex then we are done. Otherwise at least one of these chains is convex, or else S

turns more than 360◦ and is not semi-convex, and we recursively search for a suitable

split vertex in the non-convex chain.

After finding a vertex that splits S into two convex chains, we can extract the two

convex subchains of S from TS in O(log `) time without modifying TS by copying the

path from the root of TS to the split vertex and modifying the copied nodes. The

intersection of a convex chain and a line segment consists of zero, one, or two points,

or a single line segment. We can find the connected components of the intersection

between the query line segment and each of the two convex chains in O(log `) using

binary search. Therefore, the intersections between a semi-convex chain of length `

and a line segment can be found in O(log `) time.

We now turn our attention to the hourglass data structure of Guibas and Hersh-

berger, which is used to represent all possible shortest paths between a pair of diagonals

in P [22]. Let d1 = u1v1 and d2 = u2v2 be diagonals in P such that v1, u1, u2, v2 is a

subsequence of the vertices of ∂P given in clockwise order. The hourglass H(d1, d2)

between d1 and d2 is defined as π(u1, u2) ∪ π(v1, v2). If π(u1, u2) ∩ π(v1, v2) = ∅ then

both paths are semi-convex chains, and we say that the hourglass is open. Otherwise

the hourglass is closed and the shared portion of the two shortest paths is a polygonal

chain with endpoints a1 and a2, where a1 ≺π(u1,u2) a2 and a1 ≺π(v1,v2) a2. The paths

π(u1, a1), π(v1, a1), π(a2, u2) and π(a2, v2) are semi-convex chains. We call π(a1, a2)

the string of the hourglass. See Figure 3.6. The string of an hourglass is either a

fundamental string consisting of two semi-convex chains linked together by a tangent

line segment, or a derived string, which consists of two strings linked together by a

fundamental string. Any piece of a fundamental or derived string may be empty.

A useful property of hourglasses is that they can be concatenated. Given two

hourglasses H(d1, d2) and H(d2, d3), with d2 separating d1 from d3, the hourglass

H(d1, d3) can be computed in O(log n) time [22]. If the resulting hourglass is closed,

then its string is a derived string consisting of the strings of H(d1, d2) and H(d2, d3)

linked together by a fundamental string which itself contains of a subchain of a

3.2. THE AUGMENTED SHORTEST PATH DATA STRUCTURE 19

u1

v1

u2

v2

d1
d2

(i)

u1

v1

a1 a2

u2

v2

d1
d2

(ii)

Figure 3.6: (i) An open hourglass; and (ii) a closed hourglass. The shaded areas show the

regions of the polygon that can contain part of a shortest path that passes through both d1
and d2.

semi-convex chain in H(d1, d2) linked to a subchain of a semi-convex chain in H(d2, d3)

by an line segment tangent to the two semi-convex chains. See Figure 3.7, or refer

to [22] for more details.

Guibas and Hershberger’s shortest path data structure contains a set of O(n)

diagonals and hourglasses such that, given points s and t in P , a sequence of O(log n)

diagonals d1, . . . , d` with the following properties can be found in O(log n) time [22].

• The triangles 4su1v1 and 4tu`v` are contained in P . Then, if we treat s and t

as diagonals ds and dt, we can construct the hourglasses H(ds, d1) and H(d`, dt)

in constant time by treating 4su1v1 and 4tu`v` as open hourglasses.

• Each diagonal di separates s from t. Then the shortest path between s and t

must pass through every diagonal in this sequence.

• Every hourglasses H(di, di+1), 1 ≤ i < `, was precomputed and stored in the

shortest path data structure.

Then, if we concatenate the hourglasses between the diagonals in the sequence

ds, d1, . . . , d`, dt we obtain an hourglass H(ds, dt). If we fully expand the string of

H(ds, dt) we get a sequence of semi-convex chains and tangent line segments that is

equal to π(s, t). The hourglasses between adjacent pairs of diagonals in this sequence

can be concatenated in O(log n) time each, so the string representing the shortest

path between s and t can be found in O(log2 n) time1 [22].

For each hourglass stored in the shortest path data structure, we build a ray

shooting data structure on the polygonal chain represented by the string of that

1Guibas and Hershberger show that the query time can be reduced to O(log n) by precomputing

additional hourglasses [22], but for our purposes we only need the O(log2 n) time data structure.

20 CHAPTER 3. CONVEX POLYGON OBSTACLES

d1 d3

d2 u2

v2

a2

a′2

a1

a3
d1 d3

a2

a′2

a1

a3

Figure 3.7: The concatenation of two hourglasses.

hourglass. Constructing a ray shooting data structure on the string of an hourglass

takes linear time and space, so the size of the augmented data structure, as well

as the time required to construct it, depends on the total size of the precomputed

hourglasses. The pairs of diagonals for which we store a precomputed hourglasses come

from the hierarchical decomposition of P , which is based on the following theorem of

Chazelle [10]:

Theorem 3.7 (Polygon Cutting Theorem [10]). Let P be a simple polygon with n

vertices. There exists a diagonal d in P that splits P into two sub-polygons P1 and

P2, each containing at most 2
3
n+ 1 vertices.

Applying this theorem recursively on each of the subpolygons gives us a hierarchical

decomposition of P into a set of triangles. This decomposition can be interpreted as

a binary tree T , whose internal nodes are diagonals and whose leaves are triangles

that, together, form a triangulation of P. Each internal node d is associated with

the subpolygon Pd split by d during the decomposition. Since each diagonal splits

its associated polygon into two subpolygons of approximately equal size [10], T is

balanced and has height O(log n).

Each edge of Pd is either an edge of P or a diagonal that is an ancestor of d in

T . Since T has height O(log n), d has O(log n) ancestors in T , meaning that each

subpolygon has O(log n) edges that are are diagonals of the decomposition. For every

subpolygon Pd in the decomposition we precompute and store an hourglass between

each pair of diagonals on the boundary of Pd. The total number of precomputed

hourglasses is O(n) [22]. We store a ray shooting data structure with each hourglass

so the amount of space required for each hourglass is linear in the size of the hourglass.

Lemma 3.8. A simple polygon P with n vertices can be preprocessed in O(n log n)

time into a data structure of size O(n log n) so that, given two vertices s and t in P,

and a line segment uv, the I connected components of π(s, t) ∩ uv can be found in

O(I log2 n) time.

3.3. OBSTACLE-AVOIDING PATH EXISTENCE QUERIES 21

Proof. We show that the augmented shortest path data structure described earlier

has satisfies these properties.

We start by showing that the augmented data structure has size O(n log n) and

can be computed in O(n log n) time. Let d be a diagonal in T . Let h(d) denote the

height of the subtree of d in T . We start by counting the number of hourglasses

between d and diagonals that are descendants of d in T . If Pd contains ` vertices then

h(d) ≤ 1 + log3/2 `, since T is balanced. We only compute an hourglass between d

and one of its descendant d′ if Pd′ contains d on its boundary, so we compute at most

two hourglasses per level. The size of the hourglass H(d, d′) is proportional to the size

of Pd′ . If d′ is i levels away from d′ then the size of H(d, d′) is at most
(
2
3

)i
`. The

combined size of the hourglasses computed between d and its descendants in T is at

most

1+log3/2 `∑
i=1

2
(
2
3

)i
` = 4`− 8

3
.

Thus, the size of the augmented shortest path data structure is bounded from

above by the recurrence

T (n) = T (2
3
n+ 1) + T (1

3
n+ 1) + 4n− 8

3
,

which solves to O(n log n). We can augment an hourglass with a ray shooting data

structure in linear time, so the total time required to augment every hourglass in the

shortest path data structure is also O(n log n).

We can use this data structure to find a sequence of O(log n) hourglasses that

represent the shortest path between s and t. After concatenating these hourglasses

in O(log2 n) time we obtain a single hourglass whose string is equivalent to π(s, t).

Partially expanding this string, we obtain a sequence consisting of O(log n) strings for

which we have precomputed ray-shooting data structures, O(log n) semi-convex chains,

and O(log n) tangent line segments between semi-convex chains. By Lemmas 3.4 and

3.6 we can compute the I connected components of π(s, t) ∩ uv from this sequence in

O(I log2 n) time.

3.3 Obstacle-avoiding path existence queries

In this section, we describe how to perform an obstacle-avoiding path existence query.

The algorithm consists of two steps. The first step is to find the connected components

22 CHAPTER 3. CONVEX POLYGON OBSTACLES

of π(s, t) ∩ O. Then, for each of these components, we check if it is possible to take a

detour around O.

By Lemma 3.8, we can find the M connected components of π(s, t) ∩ ∂O in

O(M log2 n) time by finding the intersections between π(s, t) and each edge of ∂O
separately. The connected components of π(s, t)∩O can be found as follows. Sort the

components of π(s, t)∩∂O by their minimum geodesic distance to s in O(M logM log n)

time. Let c1, . . . , cM be the sorted sequence of connected components of π(s, t) ∩ O.

We show how to find the first connected component of π(s, t) ∩ O. The remaining

components can be found iteratively. Referring to Figure 3.8, c1 must be a component

of type (i) or (ii), or else s ∈ O. If c1 is tangent to P, as in case (i), then c1 is itself

a component of π(s, t) ∩ O. Otherwise, we are in case (ii) and π(s, t) crosses ∂O to

enter the interior of O at c1. Then x1 is an endpoint at the start of a connected

component of π(s, t) ∩ O, and the next component of π(s, t) ∩ O we see must belong

to case (iii) or case (iv). Components belonging to case (iii), where π(s, t) reflects

off of ∂O, cannot contain the endpoint of the first component of π(s, t) ∩ O, so we

skip over components of type (iii). After skipping over a sequence of components of

type (iii) we find a component ci, of type (iv), such that π(s, t) crosses ∂O at ci to

leave O. Then π(x1, yi) is the first connected component of π(s, t) ∩ O, and the next

component starts at xi+1, the endpoint of component ci+1.

The number of connected components of π(s, t) ∩ O can be linear in n. The

following lemma, however, shows that we do not need to consider more than 2m

connected components of π(s, t) ∩ ∂O when performing an obstacle-avoiding path

existence query.

Lemma 3.9. Let uv be an edge of O. If π(s, t) ∩ uv consists of more than two

connected components then there cannot be an obstacle-avoiding path between s and t.

Proof. Let c1, . . . , c` be the components of π(s, t)∩uv, ordered so that minx∈ci d(x, u) <

minx∈ci+1
d(x, u) for all 1 ≤ i < `. Assume that ` ≥ 3. Consider the component c2.

Neither u nor v is visible from any point in c2, or else c2 would be a subset of c1 or

c`. We consider five cases based on the local structure of π(s, t) around c2. The cases

we consider correspond to the cases shown in Figure 3.9. In these figures, the shaded

regions represent the interior of P , and the thick lines represents pieces of π(s, t).

(i) π(s, t) crosses uv at c2 and c2 consists of a single point x in the interior of P.

The ray shot from x towards u must intersect ∂P at a point u′ before reaching

u. Similarly, the ray shot from x towards v meets ∂P at a point v′. Then u′v′ is

a chord separating s from t.

3.3. OBSTACLE-AVOIDING PATH EXISTENCE QUERIES 23

xi xi

yi

xi
yi

(i)

xi
xi yi

xi

yi

(ii)

xi xi yi xi

yi

(iii)

xi xi yi xi

yi

(iv)

Figure 3.8: The possible types of components of π(s, t) ∩ ∂O.

(ii) π(s, t) crosses uv at c2 and c2 consists of a single point x on the boundary of

P. Without loss of generality, assume that x ∈ PLst. One of the rays shot from

x towards u and from x towards v must enter into the interior of O, or else

x is a non-reflex vertex of P in which case x = s or x = t and there is no

obstacle-avoiding path between s and t. Assume that the ray shot towards u

enters the interior of P . This ray first meets ∂P at a point u′ such that u′ ∈ PRst.
Then xu′, xu′ is a chord in P separating s from t.

(iii) π(s, t) crosses uv at c2 and c2 consists of a line segment xy. Both x and y must

be reflex vertices of P, and, since π(s, t) crosses uv, xy is the shared edge of

two maximal spirals, which implies that x and y are on opposite chains of the

boundary of P , so xy is a chord in P separating s from t.

24 CHAPTER 3. CONVEX POLYGON OBSTACLES

(iv) π(s, t) reflects off uv at c2 and c2 consists a single point x on the boundary of P .

Then x is a reflex vertex of P and the rays shot from x towards u, and from x

towards v, enter the interior of P and meet ∂P at points u′ and v′, respectively.

Both xu′ and xv′ are chords in P that separate s from t.

(v) π(s, t) reflects off uv at c2 and c2 consists of a line segment uv. Both x and y

are reflex vertices of P , so the rays shot from x towards u, and from x towards

v, enter the interior of P and meet ∂P at points u′ and v′, respectively. Both

xu′ and xv′ are chords in P that separate s from t.

In each of the five possible cases there exist chords separating s from t that are

contained in O, implying that there cannot be an obstacle-avoiding path between s

and t.

vu u′ v′x

(i)

vu u′ x

(ii)

vu x
y

(iii)

vu u′ v′x

(iv)

vu u′ v′x y

(v)

Figure 3.9: The ways in which π(s, t) can intersect an edge of O if π(s, t) intersects that

edge at least three times.

Corollary 3.10. If there is an obstacle-avoiding path between s and t then π(s, t)∩∂O
and π(s, t) ∩ O each consist of at most 2m connected components.

Proof. The first claim follows directly from Lemma 3.9. Then, since each component

of π(s, t) ∩ O contains at least one point of ∂O, π(s, t) ∩ O consists of at most 2m

connected components.

Then, if we find that π(s, t) intersects an edge of O more than two times, we can

conclude that there cannot be an obstacle-avoiding path between s and t.

Lemma 3.11. In O(m log2 n) time we can either find all O(m) connected components

of π(s, t) ∩ O or determine that there cannot be an obstacle-avoiding path between s

and t.

3.3. OBSTACLE-AVOIDING PATH EXISTENCE QUERIES 25

Proof. The M connected components of π(s, t) ∩ O can be found in O(M log2 n)

time. By Corollary 3.10, when we are computing these components we can stop if we

find an edge of O whose intersection with π(s, t) consists of at least three connected

components. So, either M ≤ 2m, or M > 2m and there must is an edge of O that

intersects π(s, t) at least three times and we can conclude that there cannot be an

obstacle-avoiding path between s and t.

In order to check if we can walk around O we need to be able to check whether a

line segment intersects the clockwise or counter-clockwise boundary of P between s

and t. Let 〈p1, . . . , pn, p1〉 be the polygonal chain that is the boundary of P , given in

clockwise order starting from an arbitrary vertex p1. Construct a range tree T on the

edges of ∂O [8]. The edges of ∂O are stored in the leaves of T and each internal node

v contains the vertex of O that is common to the two subchains represented by the

subtree of v. For each internal vertex v in T we construct and store a ray-shooting

data structure on the subchain represented by the subtree rooted at v. This range

tree can be constructed in O(n log n) time and allows us to determine whether a given

line segment intersects the clockwise or counterclockwise chain between two given

points s and t in O(log2 n) time [8].

We now describe how to perform an obstacle-avoiding path existence query. Com-

pute the connected components of π(s, t)∩O, stopping if there is an edge of O whose

intersection with π(s, t) consists of more than two connected components. If there

is such an edge, then report that there is no obstacle-avoiding path between s and

t. By Lemma 3.11, this step can be done in O(m log2 n) time. For each connected

component c in π(s, t) ∩ O with endpoints y ≺π(s,t) z, let αR and αL be the clockwise

and counter-clockwise chains of ∂O between y and z, respectively. For each edge uv

in αR check if uv intersects PRst. This can be done in O(log2 n) time using the range

tree T described earlier. Repeat this for each edge in αL, checking if these edges

intersect PLst. If an edge of αR intersected PRst and an edge of αL intersected PLst then,

by Lemma 3.3, there is no obstacle-avoiding path between s and t. This step takes

O(m log2 n) time in total, since we check if each edge of O intersects ∂O at most

three times in total due to Lemma 3.9. If we are able to walk around each connected

component, then there is an obstacle-avoiding path between s and t. We conclude

with the following theorem.

Theorem 3.12. A simple polygon P with n vertices can be preprocessed in O(n log n)

time into a data structure of size O(n log n) so that, given two vertices s and t in P,

and a convex polygon obstacle O containing m vertices, it is possible to determine

whether there is an obstacle-avoiding path between s and t in O(m log2 n) time.

26 CHAPTER 3. CONVEX POLYGON OBSTACLES

3.4 Reporting a path

In this section, we show how to find an obstacle-avoiding path between s and t, if

such a path exists.

Let Q = {O1, . . . ,Oh} be the set of polygonal obstacles. We start by showing how

to find a path between s and t that is contained in the closure of P \ Q, that is, a

path between s and t that avoids the interiors of the obstacles but may intersect the

boundaries of the obstacles.

Let c1, . . . , c` be the connected components of π(s, t)∩Q ordered by their minimum

geodesic distance to s. For each component ci, let xi and yi be the endpoints of ci
such that xi ≺π(s,t) yi. If there is an obstacle-avoiding path between s and t, then,

by Lemma 3.3, either the clockwise or counter-clockwise chain of the obstacle that

contains ci is contained in the interior of P , with the possible exception of the endponits

xi and yi which can lie on the boundary of P . Let αi be such a chain. Then,

π(s, x1) ∪ α1 ∪ π(y1, x2) ∪ . . . ∪ π(y`−1, x`) ∪ α` ∪ π(y`, t)

is a path between s and t that is contained in P \ Q.

Lemma 3.13. If there is an obstacle-avoiding path between s and t then a path between

s and t that is contained in P \Q can be reported in O(m log2 n+ k) time, where k is

the number of turns made by π(s, t).

Proof. By Lemma 3.10,

π(s, x1) ∪ α1 ∪ π(y1, x2) ∪ . . . ∪ π(y`−1, x`) ∪ α` ∪ π(y`, t)

makes at most 2k + 2m turns. Therefore, using the path existence algorithm given in

Section 3.3 as well as the shortest path data structure of Guibas and Hershberger [22],

we can find and report the components of this path in O(m log2 n+ k) time.

If the minimum distance between any two obstacles is ζ > 0, then it is possible to

find an obstacle-avoiding path between s and t that does not touch the boundaries

of the obtacles. For each obstacle Oi, construct an offset polygon O?i such that for

each point p? ∈ ∂O?i with corresponding point p ∈ ∂Oi, 0 < d(p?, p) < ζ
2
. Then, by

Lemma 3.13, we can find a path between s and t in P \⋃1≤i≤hO?i in O(m log2 n+ k)

time. This path is an obstacle-avoiding path.

Corollary 3.14. If there is an obstacle-avoiding path between s and t, and the

minimum distance ζ > 0 between all pairs of obstacles is known, then an obstacle-

avoiding path between s and t can be reported in O(m log2 n+ k) time, where k is the

number of turns made by π(s, t).

Chapter 4

Disk Obstacles

In this chapter, we show how to preprocess a simple polygon P of size n into a data

structure of size O(n log n) in O(n log2 n) time so that given two vertices s and t of P ,

and a disk obstacle O, we can determine whether there exists an obstacle-avoiding

path between s and t in O(log3 n) time.

In Section 4.1 we describe the structure of the Voronoi diagram of P, which will

be used throughout this chapter. In Section 4.2 we introduce a distance function we

call the hitting distance and show how it can be used to determine whether there is

an obstacle-avoiding path between s and t. Section 4.3 introduces a Voronoi diagram

based on the hitting distance and in Section 4.4 we show how to use this diagram to

answer obstacle-avoiding path existence queries.

4.1 The Voronoi diagram of a simple polygon

The Voronoi diagram of a set of Voronoi sites S, denoted by V(S), is a division of

the plane into a set of Voronoi regions. Each region is associated with a site s ∈ S
and contains all points in R2 that are closer to s than to any other site in S under

some distance function. The Voronoi diagram itself is the locus of all points x ∈ R2

such that x is closest to at least two sites in S. The Voronoi diagram of a set of

points under the Euclidean distance is the most well-known Voronoi diagram and

has been studied in great detail since it was introduced by Shamos and Hoey [45].

Figure 4.1 shows an example of the Euclidean Voronoi diagram of a set of points.

Voronoi diagrams of other geometric objects and distance functions have received a

considerable amount of attention over the years. We refer the reader to the survey by

Aurenhammer and Klein [5] and the book by Aurenhammer et al. [6] for more details.

27

28 CHAPTER 4. DISK OBSTACLES

Figure 4.1: The Voronoi diagram of a set of points.

Let P be a simple polygon with n vertices. The Voronoi diagram of P is a Voronoi

diagram whose sites are the open edges and reflex vertices of P [34]. Figure 4.2 shows

an example of the Voronoi diagram of a simple polygon. We are only interested in

the part of this diagram that is contained in P, so we do not consider the parts of

V(P) that lie outside of the polygon, and throughout the rest of this chapter, when

we refer to V(P), we are referring to the parts of V(P) that are inside P . The Voronoi

diagram of P has size O(n) and can be computed in O(n) time [16].

Figure 4.2: The Voronoi diagram of a simple polygon.

4.1. THE VORONOI DIAGRAM OF A SIMPLE POLYGON 29

Combinatorially, V(P) is a tree-like planar graph with O(n) edges. Each edge in

V(P) is a line segment, or an arc of a parabola, that is a subset of the bisector of two

Voronoi sites. The only points of ∂P in V(P) are the vertices of P . Let x be a vertex

of P . If x is a non-reflex vertex then its degree in V(P) is one. Otherwise, x is a reflex

vertex and its degree is two. If we treat each reflex vertex x as two distinct vertices,

each of which is incident to one of the two edges of V(P) incident to x, then we may

consider V(P) to be a tree whose leaves are the vertices of P .

Let s and t be two vertices of P. If s and t are non-reflex vertices then there

is a unique path between s and t in V(P), otherwise there can be up to four paths

between s and t. Let e1, . . . , ek be the edges of a path between s and t in V(P), chosen

arbitrarily. Each edge ei is an arc of the bisector of two Voronoi sites pR ⊆ PRst and

pL ⊆ PLst, each of which is a reflex vertex of P or an edge of P. The bisector of pR
and pL can consist of up to seven arcs of lines and parabolas, but ei itself is either

a line segment or an arc of a single parabola [34]. We define the image of ei on pR,

denoted by IR(ei), as

IR(ei) =
⋃
x∈ei

{y ∈ pR : d(x, y) = min
z∈pR

d(x, z)},

where pR denotes the closure of pR in the Euclidean topology. The image of ei on pL,

denoted by IL(ei), is defined analogously. Figure 4.3 shows the four types of edges

that can occur in V(P) and their images on ∂P. In this figure, e1 is incident to a

reflex vertex and its images are equal to that vertex; the Voronoi sites defining e2
are both reflex vertices; one site defining e3 is a reflex vertex and the other is a line

segment; and both sites defining e4 are line segments. Figure 4.4 shows a Voronoi

path between two vertices s and t in a simple polygon P (refer to Figure 4.2 for its

Voronoi diagram). In Figure 4.4, the images of e1, e2 and e3 on PLst are subsegments of

a single edge of P , as are the images of e3, e4 and e5 on PRst. Since t is a reflex vertex,

IR(e6) = IL(e6) = t.

Lemma 4.1. Let x be a point on an edge ei of V(P) and let d = d(x, IR(ei)) =

d(x, IL(ei)). Then D(x,d) ⊆ P.

Proof. By definition, d(x, ∂P) = d, so D(x,d) cannot contain any part of ∂P in its

interior. Therefore, D(x,d) ⊆ P .

30 CHAPTER 4. DISK OBSTACLES

e1

IR(e1) = IL(e1)

e2

IL(e2)

IR(e2)

e3

IL(e3)

IR(e3)

IL(e4)

IR(e4)

e4

Figure 4.3: The images of four Voronoi edges e1, e2, e3 and e4.

s

t

e1

IR(e1)

IL(e1)

e2

IR(e2)

IL(e2)

e3

IR(e3)

IL(e3)

e4

IR(e4)

IL(e4)

e5

IR(e5)

IL(e5)

e6

IR(e6) = IL(e6)

Figure 4.4: A path between s and t in V(P).

4.2. HITTING DISTANCE AND PATH EXISTENCE 31

4.2 Hitting distance and path existence

Let x be a point in R2 and let S be a finite set of compact subsets of R2. We define

the hitting distance between x and S, denoted by dh(x,S), to be radius of the smallest

disk Dh(x,S) centered at x that intersects every element of S. The hitting distance is

defined in terms of the Euclidean distance as

dh(x,S) = max
Y ∈S

min
y∈Y

d(x, y).

Let S1 and S2 be finite sets of compact subsets of R2. Then,

(i) dh(x,S1) < dh(x,S2) if and only if Dh(x,S1) ⊆ intDh(x,S2); and

(ii) dh(x,S1) = dh(x,S2) if and only if Dh(x,S1) = Dh(x,S2).

Let s and t be vertices of P and let e1, . . . , ek be the edges of the path between

s and t in V(P). We define the site corresponding to ei as si = {IR(ei), IL(ei)}. For

convenience, if an element of si consists of a single point then we abuse notation

slightly and do not distinguish between the set containing that point and the point

itself. There are four types of sites that can occur, each corresponding to one of the

edges shown in Figure 4.3.

• ei is an edge incident to a reflex vertex in P . Then si contains a single element

IR(ei) = IL(ei) that is the reflex vertex incident to ei, and we call si a single-vertex

site. See edge e1 in Figure 4.3.

• IR(ei) and IL(ei) are both reflex vertices of P but IR(ei) 6= IL(ei). We call si a

vertex-vertex site. See edge e2 in Figure 4.3.

• IR(ei) is a reflex vertex and IL(ei) is a line segment, or IR(ei) is a line segment

and IL(ei) is a reflex vertex. We call si a vertex-segment site. See edge e3 in

Figure 4.3.

• IR(ei) and IL(ei) are both line segments. We call si a segment-segment site. See

edge e4 in Figure 4.3.

Lemma 4.2. Let ei be an edge of the path between s and t in V(P) that is not incident

to a reflex vertex of P and let pR ∈ IR(ei) and pL ∈ IL(ei). pRpL is a chord in P.

32 CHAPTER 4. DISK OBSTACLES

Proof. pRpL is contained in
⋃
x∈ei Dh(x, si), which is contained in P due to Lemma 4.1.

If si is a vertex-vertex site or a segment-segment site then
⋃
x∈ei Dh(x, si) is convex so

pR and pL are the only points of pRpL on its boundary, and thus the only points of

pRpL on ∂P. Otherwise, si is a vertex-segment site and there is a point x in ei such

that pR, pL ∈ Dh(x, si). Since Dh(x, si) is convex, pR and pL are the only points of

pRpR on ∂Dh(x, si) and thus the only points of pRpL on ∂P .

Let S = {si}1≤i≤k be the set of sites corresponding to the edges of the path between

s and t in V(P) and let O = D(c, r) be an obstacle. The hitting distances between c

and the sites in S can be used to determine whether there is a obstacle-avoiding path

between s and t.

Lemma 4.3. There exists an obstacle-avoiding path between s and t if and only if

dh(c, si) > r for all si ∈ S.

Proof. We start by proving the forwards direction. Suppose there is a site si in S
such that dh(c, si) ≤ r. Then there exist points pR ∈ IR(ei) and pL ∈ IL(ei) such that

pR, pL ∈ O. By Lemma 4.2, pRpL is a chord in P. Since pR ∈ PRst and pL ∈ PLst, this

chord separates s from t, and by the convexity of O, pLpR ⊆ O. Therefore, there

cannot be an obstacle-avoiding path between s and t.

We now prove the backwards direction. Let γst =
⋃

1≤i≤k ei be the path between s

and t in V(P). If γst ∩ O = ∅, then γst is an obstacle-avoiding path between s and t.

If γst ∩ O consists of a single connected component γxy with endpoints x ≺γst y then

γst partitions O into two regions, OR, bounded by γxy and the clockwise arc αR of ∂O
between x and y; and OL, bounded by γxy and αL, the counter-clockwise arc of ∂O
between x and y. In order to prove that there is an obstacle-avoiding path between s

and t it is sufficient to show that either αR or αL is contained in the interior of P .

We claim that if c ∈ OR then αL ⊆ intP , and if c ∈ OL then αR ⊆ intP . Assume

that c ∈ OR. The case where c ∈ OL is symmetric. If αL is not contained in the interior

of P , then αL must contain at least one point z on the boundary of P . Since c ∈ OR
and z ∈ OL, cz intersects γxy at a point c′. Let ei be an edge of γst containing c′ and

let pR ∈ IR(ei) and pL ∈ IL(ei) be the points such that dh(c′, si) = d(c′, pR) = d(c′, pL).

Refer to Figure 4.5. Then d(c′, pR) ≤ d(c′, z) and by the triangle inequality

d(c, pR) ≤ d(c, c′) + d(c′, pR)

≤ d(c, c′) + d(c′, z)

= d(c, z)

= r.

4.2. HITTING DISTANCE AND PATH EXISTENCE 33

A symmetric argument shows that d(c, pL) ≤ r. Therefore, pR ∈ O and pL ∈ O,

implying that dh(c, si) ≤ r. This contradicts the assumption that dh(c, si) > r for

all sites si ∈ S. Therefore, αL is contained in the interior of P and there is an

obstacle-avoiding path between s and t.

c

c′

pR

pL

x

y

O = D(c, r)

αR

αL
z

Figure 4.5: If αL ∩ ∂P 6= ∅ then d(c, pL) ≤ r and d(c, pR) ≤ r.

In order to handle cases where γst ∩ O consists of multiple connected components

we show that each component can be considered separately. Let γx1y1 , . . . , γx`y` be

the sequence of connected components of γst ∩ O, ordered by their minimum distance

to s as measured along γst, where each γxjyj , 1 ≤ j ≤ `, has endpoints xj ≺γst yj.
Let s = z1, z2, . . . , z`, z`+1 = t be points on γst such that yj ≺γst zj+1 ≺γst xj+1 for all

1 ≤ j ≤ `. Let γzjzj+1
denote the subpath of γst between zj and zj+1. Then γzjzj+1

∩O
consists of a single connected component γxjyj , and if dh(c, si) > r for all si ∈ S,

then for all 1 ≤ j ≤ ` there is an obstacle-avoiding path δj between zj and zj+1, and⋃
1≤j≤` δj is an obstacle-avoiding path between s and t.

To determine whether there is an obstacle-avoiding path between s and t it is

sufficient to check whether the hitting distance between a site si in S that is closest

to the center c of the disk O = D(c, r) under the hitting distance is greater than r.

Corollary 4.4. Let si be a site in S that is closest to the center c of disk obstacle

O = D(c, r) under the hitting distance. There is an obstacle-avoiding path between s

and t if and only if dh(c, si) > r.

Proof. This result follows immediately from Lemma 4.3. If dh(c, si) ≤ r then there is

no obstacle-avoiding path between s and t. Otherwise, dh(c, sj) ≥ dh(c, si) > r for all

sites sj 6= si in S, and there is an obstacle-avoiding path between s and t.

34 CHAPTER 4. DISK OBSTACLES

4.3 The hitting distance Voronoi diagram

In order to find a site in S that is closest to the center c of a disk obstacle O = D(c, r)

under the hitting distance we define a Voronoi that we refer to as the hitting distance

Voronoi diagram of S and denote by Vh(S). In this section, we examine the combi-

natorial structure of Vh(S) and show that it has size O(k) and can be computed in

O(k log k) time.

Voronoi diagrams of geometric sites under a variety of distance functions have

received a considerable amount of attention over the years. Of particular interest is

the Hausdorff Voronoi diagram of a finite set of compact sites, where the distance

between a point x ∈ R2 and a site S is measured using the Hausdorff distance dH(x,S),

defined as the maximum distance between x and an element of S [43, 18]1. If each

site S is a set of compact subsets of R2 then the Hausdorff distance can be defined as

dH(x,S) = max
Y ∈S

max
y∈Y

d(x, y),

which is similar to the hitting distance function defined in Section 4.2. If the sites

are clusters of points then the Hausdorff Voronoi diagram has been referred to as the

Voronoi diagram of point clusters [19], or the Min-Max Voronoi diagram [41, 42]. If

the sites are disjoint convex sets then the diagram is known as the closest covered

set diagram [1]. In general, the Hausdorff distance Voronoi diagram of m sites has

complexity O(m2α(m)), where α(m) is the inverse Ackermann function [19]. We say

that two sites si and sj are non-crossing if CH(si) \ CH(sj) consists of at most one

connected component, where CH(S) denotes the convex hull of the elements of a set S.

A set of sites is non-crossing if its sites are pairwise non-crossing. The complexity of

the Hausdorff Voronoi diagram of a set of non-crossing sites is only O(m) [19]. Since

the hitting distance is similar to the Hausdorff distance, and the sites in S are pairwise

non-crossing due to Lemma 4.2, we will use an approach similar to that of Abellanas

et al. [1] to show that Vh(S) has linear size.

Specifically, we show that Vh(S) fits into the well-known abstract Voronoi diagram

framework introduced by Klein [30] and later refined by Klein et al. [31]. The abstract

1The Hausdorff distance between two sets X and Y is defined as

dH(X,Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

In this case however, X = {x}, and Y , as well as its elements, are compact sets, which is why we are

able to simplify the definition of the Hausdorff distance to the maximum distance between x and an

element of Y .

4.3. THE HITTING DISTANCE VORONOI DIAGRAM 35

Voronoi diagram framework generalizes the idea of a Voronoi diagrams by defining

regions in terms of systems of bisecting curves instead of in terms of a distance function.

If the Voronoi diagram of a set of m sites is an abstract Voronoi diagram then its

complexity is linear in m, and if the bisecting curves that define the diagram have

constant complexity, then the diagram can be constructed in O(m logm) time [30].

Many Voronoi diagrams that are defined in terms of distance functions are also abstract

Voronoi diagrams. Notably, every Voronoi diagram of a point set where distance is

measured using a strictly convex distance function is an abstract Voronoi diagram [36].

Examples of abstract Voronoi diagrams that explicitly make use of Klein’s framework

include the previously mentioned closest covered set diagram of Abellanas [1], and

the transportation network Voronoi diagrams introduced by Aicholzer et al. [2] and

further studied by Bae and Chwa [7].

We now define the hitting distance Voronoi diagram of S. Let si and sj be sites

in S. Following the notation of Icking et al. [28] and Aichholzer et al. [2], the hitting

distance dominance region of si with respect to sj is defined as

Dh(si, sj) = {x ∈ R2 : dh(x, si) < dh(x, sj)},

and the hitting distance bisector of si and sj is defined as

Bh(si, sj) = {x ∈ R2 : dh(x, si) = dh(x, sj)}.

The hitting distance bisector of si and sj is composed of pieces of the Euclidean

bisectors between the pairs of elements from si and sj. Let B(x, y) denote the

Euclidean bisector of x and y. Let HR(ei) be the set of points x ∈ R2 such that

d(x, IR(ei)) ≥ d(x, IL(ei)). We define HL(ei) symmetrically as the set of points x ∈ R2

such that d(x, IL(ei)) ≥ d(x, IR(ei)). The parts of Bh(si, sj) contained in the regions

HR(ei) ∩ HR(ej), HR(ei) ∩ HL(ej), HL(ei) ∩ HR(ej) and HL(ei) ∩ HL(ej) are the

subsets of B(IR(ei), IR(ej)), B(IR(ei), IL(ei)), B(IL(ei), IR(ei)), and B(IL(ei), IL(ei))

contained in these regions, respectively. Figure 4.6 shows the hitting distance bisector

Bh(s2, s4) of the two sites s2 and s4 associated with the edges e2 and e4 of the Voronoi

path shown in Figure 4.4. This bisector consists of pieces of the Euclidean bisectors

shown in Figure 4.7.

The hitting distance bisector of two sites can contain a 2-dimensional region if an

element of si intersects an element sj. For instance, the part of Bh(si, sj) belonging

to B(IR(ei), IR(ej)) can contain a 2-dimensional region if IR(ei) ∩ IR(ej) 6= ∅. There

are two cases where the elements of si and sj can intersect.

36 CHAPTER 4. DISK OBSTACLES

Bh(s2, s4)

IR(e4)

IL(e4)

e4
e2

IR(e2)

IL(e2)

B(IR(e4), IL(e4))

B(IR(e2), IL(e2))

Figure 4.6: The hitting distance bisector Bh(s2, s4) of the two sites s2 and s4 associated

with the edges e2 and e4 of the Voronoi path shown in Figure 4.4.

• si and sj share a point p on the interior of an edge uv of P. Without loss

of generality, assume that p ∈ IR(ei) ∩ IR(ej). Then IR(ei) and IR(ej) are

subsegments of an edge of O and p is an endpoint of both segments in the interior

of this edge. In this case, the region {x ∈ R2 : dh(x, si) = dh(x, sj) = d(x, p)}
is a subset of the line perpendicular to uv containing p, so Bh(si, sj) does not

contain a 2-dimensional region. Refer to Figure 4.8.

• si and sj share a point p that is a reflex vertex of P . Without loss of generality,

assume that p ∈ IR(ei) ∩ IR(ej). In this case, the region {x ∈ R2 : dh(x, si) =

dh(x, sj) = d(x, p)} is the 2-dimensional cone with apex p bounded by the two

lines through p that are perpendicular to IR(ei) and IR(ej) and opening into the

interior of P . Refer to Figure 4.9.

A special case occurs when both elements of si are reflex vertices pR and pL
such that pR ∈ IR(ej) and pL ∈ IL(ej). In this case, the hitting distance bisector

consists solely of the 2-dimensional region {x ∈ R2 : dh(x, si) = dh(x, sj) =

d(x, pR)} ∪ {x ∈ R2 : dh(x, si) = dh(x, sj) = d(x, pL)}. See Figure 4.10 for an

example. In this case, Dh(si, sj) = ∅.

Bisectors with 2-dimensional regions are difficult to deal with when construct-

ing Voronoi diagrams. Several other distance functions that give bisectors with

2-dimensional regions include the geodesic distance function [4], non-strict convex

4.3. THE HITTING DISTANCE VORONOI DIAGRAM 37

B(IR(e2), IR(e4))

IR(e2)
IR(e4)

HR(e2) ∩HR(e4)

B(IR(e2), IL(e4))

IL(e4)

IR(e2)

HR(e2) ∩HL(e4)

B(IL(e2), IR(e4))

IL(e2)

IR(e4)

HL(e2) ∩HR(e4)

B(IL(e2), IL(e4))

IL(e2)
IL(e4)

HL(e2) ∩HL(e4)

Figure 4.7: The bisectors that make up Bh(s2, s4). The shaded regions indicate which

pieces of these bisectors end up forming Bh(s2, s4), shown in Figure 4.6.

distance functions [28] and the transportation network distance function [2, 7]. A

common approach to dealing with 2-dimensional bisectors is to define an ordering ≺
on the elements of S. If si ≺ sj then we assign the 2-dimensional region to the Voronoi

region of si, otherwise we assign it to the Voronoi region of sj. We then define a

bisecting curve B?
h(si, sj), referred to as the chosen hitting distance bisector of si and

sj, that follows the boundary of this new Voronoi region. The chosen hitting distance

bisector of si and sj does not contain a 2-dimensional region, so it can be used in

place of the actual bisector of si and sj.

We have to be careful with how we define the ordering on the sites in S. If Bh(si, sj)

contains a 2-dimensional region, and both elements of si are distinct reflex vertices

that are also contained in the elements of sj , then defining ≺ such that sj ≺ si results

in a degenerate chosen hitting distance bisector B?
h(si, sj) = ∅. Informally, we want

vertex-vertex sites to appear at the beginning of the ordering, so that each Voronoi

region is non-empty, and we want single-vertex sites to appear at the end of the

38 CHAPTER 4. DISK OBSTACLES

ei
ej

IL(ej)

IL(ei)

IR(ej)
p

B(IR(ei), IR(ej))

IR(ei)

ei
ej

IL(ej)

IL(ei)

IR(ej)

IR(ei)

Bh(si, sj)

p

Figure 4.8: The Euclidean bisector of IR(ei) and IR(ej) and the hitting distance bisector

of si and sj .

ordering, so that each Voronoi edge is contained in its own Voronoi region. This is

satisfied by defining ≺ so that si ≺ sj if and only if

(i) si is a vertex-vertex site and sj is not a vertex-vertex site; or

(ii) si is a not a single-vertex site and sj is a single-vertex site; or

(iii) i ≤ j and we are not in case (i) or (ii).

Figure 4.11 shows the possible chosen hitting distance bisectors of the sites si and sj,

depicted in Figure 4.9, if si ≺ sj or if sj ≺ si.

The hitting distance Voronoi region of si with respect to sj is defined as

Rh(si, sj) =

{
Dh(si, sj) ∪Bh(si, sj) if si ≺ sj,

Dh(si, sj) if sj ≺ si,

and with respect to a set of sites S ′ ⊆ S as

Rh(si,S ′) =
⋂

sj∈S′,sj 6=si

Rh(si, sj).

4.3. THE HITTING DISTANCE VORONOI DIAGRAM 39

ei

ej

IL(ej)
IL(ei)

IR(ej)

p

B(IR(ei), IR(ej))

IR(ei)

ei

ej

IL(ej)
IL(ei)

IR(ej)

Bh(si, sj)

p

IR(ei)

Figure 4.9: The Euclidean bisector of IR(ei) and IR(ej) and the hitting distance bisector

of si and sj . Both bisectors contain 2-dimensional regions, shown in grey.

The chosen hitting distance bisector of si and sj is defined as

B?
h(si, sj) = ∂Rh(si, sj),

which is equivalent to Bh(si, sj) if the elements of si and sj do not intersect. Finally,

the hitting distance Voronoi diagram of S is defined as

Vh(S) =
⋃
si∈S

∂Rh(si,S).

In order to prove that the hitting distance Voronoi diagram is an abstract Voronoi

diagram, as defined by Klein et al. [31], we must show that the following properties

are satisfied.

(i) For any pair of sites si, sj ∈ S such that si 6= sj, B
?
h(si, sj) is homeomorphic to

a line.

(ii) For all non-empty subsets S ′ ⊆ S and for all sites si ∈ S ′, Rh(si,S ′) is path-

connected.

(iii) For all non-empty subsets S ′ ⊆ S,⋃
si∈S′

Rh(si,S ′) = R2.

40 CHAPTER 4. DISK OBSTACLES

ej

ei

IR(ei)

IL(ei)

Bh(si, sj)

Figure 4.10: A hitting distance bisector that consists entirely of a 2-dimensional region.

(iv) For any four sites si, sj, si′ and sj′ in S, where si 6= sj, si′ 6= sj′ , B
?
h(si, sj) ∩

B?
h(si′ , sj′) consists of a finite number of connected components.

The remainder of this section is devoted to showing that these four properties are

satisfied and, thus, that Vh(S) is abstract Voronoi diagram.

Lemma 4.5. Let si be a site in S and let x be a point in R2. There exists a path

between x and ei such that for every point y on this path and for every site sj ∈ S
such that sj 6= si,

(i) if dh(x, si) < dh(x, sj), then dh(y, si) < dh(y, sj); and

(ii) if dh(x, si) = dh(x, sj), then dh(y, si) ≤ dh(y, sj).

Proof. Let p be a point in an element of si such that dh(x, si) = d(x, p). Without

loss of generality, assume that p ∈ IR(ei). We define the strip of a line segment uv,

denoted by strip(uv), as the region, bounded by the lines perpendicular to uv passing

through u and v, that contains uv. We distinguish between four cases.

• IR(ei) is a line segment and x ∈ strip(IR(ei)). Then xp crosses ei at a point z.

Refer to Figure 4.12. We claim that xz satisfies conditions (i) and (ii).

(i) Let sj 6= si be a site in S. If dh(x, si) < dh(x, sj) then Dh(x, si) cannot

intersect both elements of sj. Let y be a point in xz. By Lemma 2.5,

Dh(y, si) ⊆ Dh(x, si), and Dh(y, si) cannot intersect both elements of sj
either. Therefore, dh(y, si) < dh(y, sj).

4.3. THE HITTING DISTANCE VORONOI DIAGRAM 41

ei

ej

IL(ej)

IL(ei)

IR(ej)IR(ei)

B?
h(si, sj)

p

ei

ej

IL(ej)

IL(ei)

IR(ej)IR(ei)

B?
h(si, sj)

p

Figure 4.11: The chosen hitting distance bisector of sites si and sj in Figure 4.9 if si ≺ sj
(left) or if sj ≺ si (right).

(ii) Let sj 6= si be a site in S such that dh(x, si) = dh(x, sj). Assume that

there is a point y ∈ xz such that dh(y, si) > dh(y, sj). Then intDh(y, si)
intersects both elements of sj and, since Dh(y, si) ⊆ Dh(x, si), intDh(x, si)
also intersects both elements of sj. This implies that dh(x, si) > dh(x, sj),

which is a contradiction. Therefore, dh(y, si) ≤ dh(y, sj).

• IR(ei) is a line segment and x /∈ strip(IR(ei)). Without loss of generality, assume

that IR(ei) is a horizontal line segment and x lies to the right of IR(ei). Let

p be the rightmost endpoint of IR(ei) and let z be the point of ei such that

dh(z, si) = d(z, p). Then z is also the rightmost endpoint of ei. We claim that

xz satisfies conditions (i) and (ii).

(i) Let sj 6= si be a site in S such that dh(x, si) < dh(x, sj) and let y be a

point in xz. The region of the plane where the hitting distance to si is

equal to the Euclidean distance to IR(ei) is a convex set, so dh(y, si) =

d(y, IR(ei)) = d(y, p). Since x, y and z are collinear, by Lemma 2.7 we have

that Dh(y, si) ⊆ Dh(x, si)∪Dh(z, si) and Dh(y, si)\Dh(x, si) ⊆ intDh(z, si).

Refer to Figure 4.13.

42 CHAPTER 4. DISK OBSTACLES

IR(ei)

ei

B(IL(ei), IR(ei))

x

z

p

Dh(x, si)

IL(ei)
y

Dh(y, si)

Figure 4.12: A path satisfying conditions (i) and (ii) of Lemma 4.5 when IR(ei) is a line

segment and x ∈ strip(IR(ei)).

Assume that dh(y, si) ≥ dh(y, sj). Then Dh(y, sj) ⊆ intDh(y, si), and

we have that Dh(y, sj) ⊆ int(Dh(x, si) ∪ Dh(z, si)) and there exist points

pR ∈ IR(ej) and pL ∈ IL(ej) such that pR, pL ∈ Dh(y, sj). At least one of pR
and pL must be contained in Dh(y, si)\Dh(x, si), or else dh(x, si) ≥ dh(x, sj),

so pR ∈ intDh(z, si) or pL intDh(z, si). Either case leads to a contradiction,

however, since Dh(z, si) cannot contain any part of ∂P in its interior, by

Lemma 4.1. Therefore, dh(y, si) < dh(y, sj).

(ii) Let sj 6= si be a site in S such that dh(x, si) = dh(x, sj) and let y be a

point in xz. By assuming that dh(y, si) > dh(y, sj) and applying the same

argument used previously to show that condition (i) holds, we arrive at a

contradiction, proving that dh(y, si) ≤ dh(y, sj).

• IR(ei) is a reflex vertex and xp intersects ei. Let z be the point where xp

intersects ei. See Figure 4.14. Using an argument similar to the case where

IR(ei) is a line segment and x ∈ strip(IR(ei)), it can be shown that xz satisfies

conditions (i) and (ii).

4.3. THE HITTING DISTANCE VORONOI DIAGRAM 43

IL(ei)

IR(ei)

ei

B(IL(ei), IR(ei)) Dh(x, si)

Dh(y, si)

Dh(z, si)

p

y
x

z

Dh(y, si) \ Dh(x, si)

Figure 4.13: A path satisfying conditions (i) and (ii) of Lemma 4.5 when IR(ei) is a line

segment and x /∈ strip(IR(ei)).

• IR(ei) is a reflex vertex and xp does not intersect ei. Then xp intersects

B(IR(ei), IL(ei)) at a point x′ and we take z to be the closest point of ei to x′ as

measured by the distance along the bisector B(IR(ei), IL(ei)). See Figure 4.15.

Using an argument similar to the one used in the case where IR(ei) is a line

segment and x /∈ strip(IR(ei)), it can be shown that xz satisfies conditions (i)

and (ii).

Lemma 4.6. int ei ⊆ Rh(si,S).

Proof. Let x be a point in int ei. Then Dh(x, si) does not contain any part of ∂P in

its interior and touches ∂P at at most two points, pR ∈ IR(ei) and pL ∈ IL(ei) [34].

Therefore, there cannot be a site sj ∈ S such that dh(x, si) > dh(x, sj). Let sj 6= si
be another site in S. If dh(x, si) < dh(x, sj) then x ∈ Dh(si, sj) and x ∈ Rh(si, sj).

Otherwise, if dh(x, si) = dh(x, sj) then x ∈ Rh(si, sj) if and only if si ≺ sj. Since

Rh(si,S) is defined as
⋂

sj∈S,sj 6=si
Rh(si, sj), we must show that if there is a site sj

such that dh(x, si) = dh(x, sj), then si ≺ sj. We distinguish between four cases based

on the type of site that si can be.

44 CHAPTER 4. DISK OBSTACLES

IL(ei)

IR(ei)

ei
B(IL(ei), IR(ei))

x

z

Dh(x, si)

Dh(y, si)

y

p

Figure 4.14: A path satisfying conditions (i) and (ii) of Lemma 4.5 when IR(ei) is a reflex

vertex and xp intersects ei.

• si is a single-vertex site. Then Dh(x, si) touches ∂P at a single point and there

cannot be a site sj 6= si in S such that dh(x, si) = dh(x, sj).

• si is a vertex-vertex site. Suppose that there is a site sj 6= si in S such that

dh(x, sj) = dh(x, si). The elements of sj cannot be distinct reflex vertices of P
as well, or else sj = si, so sj is not a vertex-vertex site. Then si ≺ sj.

• si is vertex-segment site. Without loss of generality, assume that IR(ei) is

a line segment and IL(ei) is a reflex vertex. If there is a site sj such that

dh(x, si) = dh(x, sj) then sj is a single-vertex site such that IR(sj) = IL(sj) = pL,

since pR is not an endpoint of the line segment IR(ei) and thus cannot belong to

an element of any site other than si. Then si ≺ sj.

• si is a segment-segment site. Only the endpoints of IR(ei) and IL(ei) can

intersect the elements of another site, so pR and pL cannot belong to the

elements of another site. Therefore, there cannot be a site sj 6= si in S such that

dh(x, si) = dh(x, sj).

4.3. THE HITTING DISTANCE VORONOI DIAGRAM 45

IL(ei)

IR(ei)

ei
B(IL(ei), IR(ei))

x

z

Dh(x, si)

Dh(z, si)

Dh(y, si)

y

x′

Dh(y, si) \ Dh(x, si)

p

Figure 4.15: A path satisfying conditions (i) and (ii) of Lemma 4.5 when IR(ei) is a reflex

vertex and xp does not intersect ei.

Lemma 4.7. Rh(si,S) is path-connected.

Proof. Let x and y be points in Rh(si,S). By definition, for all sites sj 6= si in

S, if sj ≺ si then dh(x, si) < dh(x, sj), and if si ≺ sj then dh(x, si) ≤ dh(x, sj).

Then by Lemma 4.5 there is a path γxx′ between x and a point x′ ∈ ei such that

γxx′ ⊆ Rh(si,S). Similarly, there is a path γyy′ ⊆ Rh(si,S) between y and a point

y′ ∈ ei. By Lemma 4.6, the arc αx′y′ of ei with endpoints x′ and y′ is contained

in Rh(si,S). Therefore, γxx′ ∪ αx′y′ ∪ γyy′ contains a path between x and y that is

contained in Rh(si,S).

Lemma 4.8. Let x be a point in R2. There is a site si ∈ S such that x ∈ Rh(si,S).

Proof. Let S ′ ⊆ S be the set of sites si such that dh(x, si) = minsj∈S dh(x, sj). Since

the hitting distance function is well-defined, this set is non-empty. Let si be the

minimum element of S ′ according to the total ordering defined on the sites in S. Then,

by definition, x ∈ Rh(si,S).

Lemma 4.9. Let CH(si) and CH(sj) be the convex hulls of the elements of sites si
and sj, respectively. Then int CH(si) ∩ CH(sj) = ∅.

46 CHAPTER 4. DISK OBSTACLES

Proof. Assume that int CH(si) ∩ CH(sj) 6= ∅. Then at least one element of si is a line

segment, or else CH(si) does not have an interior. Let x be a point in int CH(si) ∩
CH(sj). We may assume that x ∈ ∂P since, by Lemma 4.2, the edges of CH(sj) that are

not part of ∂P must be chords in P . Since CH(si) ⊆
⋃
z∈ei Dh(z, si) there is a point z

on ei such that x ∈ intDh(z, si). This is a contradiction since, by Lemma 4.1, Dh(z, si)

cannot contain any part of ∂P in its interior. Therefore, int CH(si) ∩ CH(sj) = ∅.

Lemma 4.10. Rh(si, sj) is unbounded.

Proof. Lemma 4.9 implies that there exists a line L that separates the interior of

CH(si) from the interior of CH(sj). Let Hi and Hj be the open half-planes on either

side of L such that CH(si) ⊆ Hi ∪L and CH(sj) ⊆ Hj ∪L. Without loss of generality,

assume that L is a vertical line passing through the origin, Hi lies to the left of L,

and Hj lies to the right of L. There are two cases to consider, based on whether or

not Hi is empty.

• Hi contains a point p in an element of si. Without loss of generality, assume

that p ∈ IL(ei). Let q be a point in IR(ei) and let q′ be the horizontal projection

of q onto L. We may assume that sj is not a single-vertex site with reflex vertex

q′ since situation is covered in the following case. Starting from q′, move a point

z left along the horizontal line through q′ until D(z, d(z, q′)) contains both p and

q. Consider any point z′ on the horizontal line through q′ lying to the left of

z. By Lemma 2.5, D(z, d(z, q′)) ⊆ D(z′, d(z′, q′)), so dh(z
′, si) ≤ d(z′, q′). Refer

to Figure 4.16. Since D(z′, d(z′, q′)) does not intersect Hj and touches L at a

single point q′, z′ ∈ Rh(si, sj). Since z′ can be placed arbitrarily far away from

z, and hence from si, along the line through q′, Rh(si, sj) is unbounded.

ei

L

q q′zz′

D(z′, d(z′, q′))

D(z, d(z, q′))

p

ej

Hi Hj

Figure 4.16: Rh(si, sj) is unbounded when Hi contains a point p in an element of si.

4.3. THE HITTING DISTANCE VORONOI DIAGRAM 47

• Hi does not contain any point in an element of si. Then si is either a single-vertex

site or a vertex-vertex site. Let pR ∈ IR(ei) and pL ∈ IL(ei).

If si is a single-vertex site let p = pR = pL and let z′ be a point lying to the

left of L on the horizontal line through p. Then p is the only point of L in

Dh(z′, si) = D(z′, d(z, p)). Refer to Figure 4.17. Dh(z′, si) cannot intersect

both elements of sj, since sj cannot be a single-vertex site with vertex p, so

z′ ∈ Rh(si, sj). We may place z′ arbitrarily far away from p along the horizontal

line through p, so Rh(si, sj) is unbounded.

ej

Dh(z
′, si)

z′ p

ei

LHi Hj

Figure 4.17: Rh(si, sj) is unbounded when si is a single-vertex site and Hi does not contain

part of an element of si.

If si is a vertex-vertex site we may assume that pR ∈ IR(ej) and pL ∈ IL(ej),

otherwise we could have chosen L so that either pR or pL is in Hi. At least

one element of sj must be a line segment, otherwise sj = si, so si ≺ sj. Let

z be a point in int ei. By Lemma 4.6, z ∈ Rh(si, sj). Let z′ be any point

on the horizontal line through z that lies to the left of z. By Lemma 2.6,

D(z′, si) ∩Hj ⊆ Dh(z, si), so z′ ∈ Rh(si, sj). Refer to Figure 4.18. Again, since

we may place z′ arbitrarily far away from z along the horizontal line through z,

Rh(si, sj) is unbounded.

Lemma 4.11. B?
h(si, sj) is homeomorphic to a line.

Proof. B?
h(si, sj) is non-empty and does not contain any 2-dimensional region, due

to the total ordering defined on S. By Lemmas 4.7 and 4.10, the Voronoi regions

Rh(si, sj) and Rh(sj, si) are path-connected and unbounded, implying that B?
h(si, sj)

is acyclic and unbounded. This is sufficient to prove that B?
h(si, sj) is homeomorphic

to a line [7].

48 CHAPTER 4. DISK OBSTACLES

LHi Hj

ei

ej

pR

pL

z

Dh(z
′, si)

Dh(z, si)

z′

Figure 4.18: Proof of Lemma 4.10 when si is a vertex-vertex site and Hi does not contain

part of an element of si.

Lemma 4.12. B?
h(si, sj) has constant complexity.

Proof. The hitting distance bisector of two sites consists of pieces of the boundaries

of the Euclidean bisectors between elements of si and sj . Each site consists of at most

two reflex vertices or line segments, so B?
h(si, sj) consists of a constant number of arcs

of lines and parabolas.

Lemma 4.13. The intersection of two chosen hitting distance bisectors consists of a

constant number of connected components.

Proof. This follows directly from Lemma 4.12. Each chosen hitting distance bisector

consists of a constant number of arcs of lines and parabolas so the intersection of

two chosen hitting distance bisectors consists of a constant number of connected

components.

Lemma 4.14. Vh(S) is an abstract Voronoi diagram.

Proof. By Lemma 4.11 the chosen hitting distance bisectors of the sites in S are

homeomorphic to lines and by Lemma 4.13 the intersection of any two of these

bisectors consists of a constant number of connected components. By Lemma 4.7 the

Voronoi regions of S are path-connected and by Lemma 4.8 the union of these regions

covers R2. Therefore, Vh(S) is an abstract Voronoi diagram [31].

Since Vh(S) is an abstract Voronoi diagram, it has size O(k). There are several

optimal algorithms for constructing abstract Voronoi diagrams, including an O(k log k)

divide and conquer algorithm by Klein [30] and an O(k log k) expected time randomized

incremental construction algorithm by Klein et al. [32]. The randomized incremental

4.3. THE HITTING DISTANCE VORONOI DIAGRAM 49

construction algorithm is of particular interest since it only requires that we are able

to construct the hitting distance Voronoi diagram of five sites in constant time. The

chosen hitting distance bisector between any pair of sites has constant complexity so

the diagram of five sites can be computed explicitly from these bisectors in constant

time.

After constructing the hitting distance Voronoi diagram of S in O(k log k) time we

can construct an O(k) size point location data structure on Vh(S) in O(k log k) time

so that the site closest to a given point x can be found in O(log k) time [39, 44, 8].

We conclude with the following theorem.

Theorem 4.15. A set S of k sites associated with k edges in V(P) can be preprocessed

in O(k log k) time into a data structure of size O(k) so that, given a point x ∈ R2, a

site si ∈ S such that dh(x, si) = minsj∈S dh(x, sj) can be found in O(log k) time.

s

t

Rh(s1)

Rh(s4)Rh(s2)

Rh(s3)

Rh(s6)

Rh(s5)

Figure 4.19: The hitting distance Voronoi diagram of the sites corresponding to the edges

of a path between s and t in V(P).

50 CHAPTER 4. DISK OBSTACLES

4.4 Obstacle-avoiding path existence queries

In this section, we show how to construct data structures so that, given two arbitrary

vertices s and t of P, a site corresponding to an edge of a path between s and t in

V(P) that is closest to the center c of a query disk D(c, r) under the hitting distance

can be found efficiently.

The simplest approach is to construct hitting distance Voronoi diagrams for the

paths between every pair of vertices in P. By Theorem 4.15, this can be done in

O(n2 log n) time and results in a data structure of size O(n2) that supports O(log n)

time closest site queries. By Corollary 4.4, this data structure can be used to answer

obstacle-avoiding path existence queries in O(log n) time.

Theorem 4.16. A simple polygon P with n vertices can be preprocessed in O(n2 log n)

time into a data structure of size O(n2) so that, given two points s and t in P and

disk obstacle O, it is possible to determine whether there is an obstacle-avoiding path

between s and t in O(log n) time.

We now show how to reduce the preprocessing time and space requirements, albeit

at the expense of query time. The general idea is to decompose V(P) into O(n) paths

so that any path between any pair of vertices s and t in V(P) is contained in O(log n)

of the paths in the decomposition. For each subpath in the decomposition, we store

a range tree on the edges of that subpath, and for each node in each range tree we

construct a hitting distance Voronoi diagram on the sites corresponding to the edges

of the subpath represented by the subtree of that node. Using this data structure, we

can find a site that is closest to the center c of a query disk D(c, r), under the hitting

distance, in O(log3 n) time.

The subpath decomposition of V(P) is based on the following theorem, first

introduced by Cole and Vishkin to evaluate expression trees in parallel [17], and later

used by Narasimhan and Smid for lowest common ancestor queries in trees [40].

Theorem 4.17 ([17, 40]). Let T be a tree of size m and let size(v) denote the size of the

subtree rooted at a node v in T . Let u be a node in T and let v1, . . . , v` be the children of

u. There is at most one child vi, 1 ≤ i ≤ `, such that blog(size(vi))c = blog(size(u))c;
for every other child vj, 1 ≤ j ≤ `, such that vj 6= vi, blog(size(vj))c < blog(size(u))c.

We will assume that V(P) is rooted at an arbitrary vertex vr in V(P). By

Theorem 4.17, for every vertex v in V(P) there is a unique maximal sequence v1, . . . , vk
of vertices of V(P), which we call a group, that contains v and has the following

properties.

4.4. OBSTACLE-AVOIDING PATH EXISTENCE QUERIES 51

• blog(size(vi))c = blog(size(vj))c for all 1 ≤ i < j ≤ k; and

• par(vi) = vi+1 for all 1 ≤ i < k, where par(vi) denotes the parent of vi in V(P).

Let e1, . . . , ek be the edges of V(P) such that each edge ei, 1 ≤ i ≤ k, has endpoints

vi and par(vi). Note that one vertex of ek is not part of the group v1, . . . , vk, and if

vk = vr then there is no edge ek at all. For simplicity, we will assume that vk 6= vr.

Construct a range tree T on the edges e1, . . . , ek. For each node x in T , construct

a hitting distance Voronoi diagram on the subset of the edges e1, . . . , ek stored in

the subtree rooted at x. By Theorem 4.15, the range tree has size O(k log k) can

be constructed in O(k log2 k) time. We store this range tree at vk, the vertex in the

sequence that is closest to the root, and with each node vi, 1 ≤ i ≤ k, we store a group

parent pointer to vk, gpar(vi) = vk. Let T [vi, vj], 1 ≤ i < j ≤ k denote the O(log k)

hitting distance Voronoi diagrams of the sites associated with the edges ei, . . . , ej.

These diagrams can be found in O(log k) time using the range tree T stored at vk.

By Theorem 4.17, each vertex of V(P) belongs to exactly one group and there are

O(n) groups in total. If we construct a range tree for each of these groups then the

size of the resulting data structure is O(n log n) and it can be computed in O(n log2 n)

time. Figure 4.20 shows part of a path decomposition of a Voronoi diagram V(P). In

this figure, the thick edges represent the edges of a path between s and t in V(P).

The vertices of this path are contained in the groups G1, . . . , G6. Notice that there is

only one edge of G3 in the path between s and t, and this edge is in the middle of the

group. This illustrates why we need to make use of the range tree data structure.

We now describe how to perform an obstacle-avoiding path existence query. Let s

and t be vertices of P and let O = D(c, r) be a disk obstacle. Let vlca be the lowest

common ancestor of s and t in V(P). The general idea is to walk up V(P) from s to

vlca and from t to vlca by following the group parent pointers stored at each node. For

each group encountered when walking towards vlca we search the range tree stored with

the group parent of that group in O(log2 n) time to find a site s in a hitting distance

Voronoi diagrams stored in that tree that is closest to c under the hitting distance.

If dh(c, s) ≤ r then, by Lemma 4.3, we can report that there is no obstacle-avoiding

path. Otherwise, we continue walking towards vlca by following the parent pointers

of the group parent pointers to find the next group on the path from s to vlca. If we

reach vlca from s and from t without finding a site s such that dh(c, s) ≤ r then, by

Corollary 4.4, there is an obstacle-avoiding path between s and t. Since there are

O(log n) groups between s and vlca we search O(log n) range trees for a total query

time of O(log3 n). We present this algorithm in more detail in Algorithm 4.1. We

conclude with the following theorem.

52 CHAPTER 4. DISK OBSTACLES

Theorem 4.18. A simple polygon P with n vertices can be preprocessed in O(n log2 n)

time into a data structure of size O(n log n) so that, given two points s and t in P,

and disk obstacle O, it is possible to determine whether there is an obstacle-avoiding

path between s and t in O(log3 n) time.

t

s

G1

G2

G3

G4

G5

G6

Figure 4.20: Groups G1, . . . , G6 contain the vertices of a path between s and t in V(P).

4.4. OBSTACLE-AVOIDING PATH EXISTENCE QUERIES 53

Algorithm 4.1: Single disk obstacle-avoiding path existence query.

Input: Vertices s and t of P and a disk obstacle O = D(c, r)

Output: Returns whether there is an obstacle-avoiding path between s and t.

vlca ← lowest common ancestor of s and t in V(P)

for v ∈ {s, t} do
while gpar(v) 6= gpar(vlca) do

T ← the range tree stored at gpar(v)

X ← T [v, par(gpar(v))]

for Vh(S) ∈ X do

si ← a site in S that is closest to c under the hitting distance

if dh(c, si) ≤ r then
return false

end

end

v ← par(gpar(v))

end

if v 6= vlca then

T ← the range tree stored at gpar(vlca).

X ← T [v, vlca]

for Vh(S) ∈ X do

si ← a site in S that is closest to c under the hitting distance

if dh(c, si) ≤ r then
return false

end

end

end

end

return true

54 CHAPTER 4. DISK OBSTACLES

Chapter 5

Conclusion

In this thesis, we showed how to preprocess a simple polygon P so that, given two points

s and t inside P, and a set Q of h pairwise disjoint obstacles that are either convex

polygons or disks, it is possible to determine whether there is an obstacle-avoiding

path between s and t.

5.1 Contributions

In Chapter 3 we focused on sets of pairwise disjoint convex polygon obstacles. We

made use of the shortest path data structure of Guibas and Hershberger [22] to

find the connected components of the intersection between π(s, t) and each obstacle

in Q. In order to do so, we augmented each precomputed hourglass stored in the

shortest path data structure with a ray shooting data structure. We showed that the

augmented shortest path data structure has size O(n log n) and can be constructed

in O(n log n) time. We then proved that there is an obstacle-avoiding path between

s and t if and only if, for each connected component c of π(s, t) ∩ ⋃Oi∈QOi, it is

possible to walk clockwise or counter-clockwise along the boundary of the obstacle Oi
containing c, from one endpoint of c to the other, without hitting the boundary of

P. In order to obtain query times sublinear in the size of P we could not consider

every connected component in the intersection of π(s, t) and the obstacles in Q, since

there could be O(n) components in total. To get around this, we showed that if the

intersection of π(s, t) with an edge of an obstacle in Q consists of more than two

connected components then there cannot be an obstacle-avoiding path between s and

t. This gives us an upper bound of 2m on the number of connected components of

π(s, t) ∩⋃Oi∈QOi that need to be checked before we can determine whether there is

55

56 CHAPTER 5. CONCLUSION

an obstacle-avoiding path between s and t, where m is the sum of the number of edges

in each obstacle in Q. Since we only need to check if we can walk around O(m) of the

connected components, we obtain O(m log2 n) time obstacle-avoiding path existence

queries.

In Chapter 4 we considered sets of pairwise disjoint disk obstacles. We started

by reviewing the Euclidean Voronoi diagram of a simple polygon. In particular, we

noted that we may consider this diagram to be a tree whose leaves are the vertices

of P, and that each edge in the diagram is defined by two pieces of the boundary

of P that are either reflex vertices or subsegments of the edges of P. In order to

solve obstacle-avoiding path existence queries, we introduced the hitting distance and

showed that, by considering the pieces of the boundary of P defining each edge of

the Voronoi path between s and t, the hitting distance can be used to determine

whether there is an obstacle-avoiding path between s and t. Specifically, we proved

that there is an obstacle-avoiding path between s and t if and only if there is an

edge in the Voronoi path between s and t such that the hitting distance between the

center of each disk obstacle Oi in Q and the set containing the pieces of the boundary

defining that edge is less than or equal to the radius of Oi. We then showed that

the Voronoi digram of these edge sites under the hitting distance can be constructed

efficiently by proving that the hitting distance Voronoi diagram is an abstract Voronoi

diagram. Finally, we showed how to construct data structures containing hitting

distance Voronoi diagrams so that obstacle-avoiding path existence queries can be

solved in O(h log n) time using a data structure of size O(n2) that can be constructed

in O(n2 log n) time, or in O(h log3 n) time using a data structure of size O(n log n)

that can be constructed in O(n log2 n) time, where h is the number of disk obstacles

in the query.

5.2 Future work

There are several possible directions for future work, in addition to the obvious

suggestions of improving the time and space complexities of the obstacle-avoiding

path existence algorithms and data structures described in this thesis.

Obstacle-avoiding path existence queries

In this thesis, we considered obstacle-avoiding path existence queries containing sets

of disjoint convex polygon and disk obstacles. The solutions we presented are likely

non-optimal. What are the lower bounds for these obstacle-avoiding path existence

5.2. FUTURE WORK 57

queries?

A natural question to ask is, for what other types of obstacles can we solve obstacle-

avoiding path existence queries efficiently? If the obstacles are all translated copies of

a fixed convex polygon, or disks of the same radius, can we improve the running time

of the path-existence queries?

If the input domain is a polygon with holes, can we solve obstacle-avoiding

path existence queries efficiently? In this setting, we cannot consider each obstacle

independently, as it is possible for the union of set of disjoint obstacles to block the

path between s and t even if every obstacle individually does not, so in this setting it

makes sense to start by considering queries containing a single obstacle.

Shortest obstacle-avoiding paths

Another direction is to find and report shortest obstacle-avoiding paths if such paths

exist. If the obstacles are convex polygons, it might be possible to use the shortest

path data structure of Guibas and Hershberger [22] to find a shortest path between

the query points. This problem appears to be more difficult if the obstacles are disks.

If it is possible report a shortest obstacle-avoiding path under the Euclidean metric

efficiently then it makes sense to consider other distance functions, such as the L1

metric [14, 13], convex distance functions [25, 9, 20], or the link-distance, where the

link-distance between s and t is the minimum number of turns required to construct a

path between s and t [46, 3, 38].

Chen notes in his recent survey on geometric shortest path queries that very little

research has focused on two-point shortest path queries in dynamic environments [12],

so there are many open problems in this area. We refer the reader to the open problems

listed at the end of his survey for more ideas on potential areas of research.

Hitting distance Voronoi diagrams

In Section 4.3 we noted the similarities between the Hausdorff Voronoi diagram and the

hitting distance Voronoi diagram and mentioned that the Hausdorff Voronoi diagram

of a set of pairwise non-crossing sites is an abstract Voronoi diagrams. Our analysis

of the hitting distance Voronoi diagram was restricted to a very specific set of sites.

It would be interesting to see if the hitting distance Voronoi diagram of pairwise

non-crossing sites is also an abstract Voronoi diagram.

The closest covered set diagram of Abellanas et al. is an abstract Voronoi diagram

when the Hausdorff distance is defined using any convex distance function [1]. If we

58 CHAPTER 5. CONCLUSION

define the hitting distance to a site as

dh(x, s) = max
Y ∈S

min
y∈Y

dc(x, y),

where dc is a convex distance function, is the hitting distance Voronoi diagram still

an abstract Voronoi diagram? If this is the case, then we can solve obstacle-avoiding

path existence queries for sets of obstacles that are homothetic copy of the compact

convex subset defining dc.

Bibliography

[1] Manuel Abellanas, Gregorio Hernández-Peñalver, Rolf Klein, Victor Neumann-

Lara, and Jorge Urrutia. A combinatorial property of convex sets. Discrete &

Computational Geometry, 17(3):307–318, 1997.

[2] Oswin Aichholzer, Franz Aurenhammer, and Belén Palop. Quickest paths, straight

skeletons, and the city Voronoi diagram. Discrete & Computational Geometry,

31(1):17–35, 2004.

[3] Esther M. Arkin, Joseph S. B. Mitchell, and Subhash Suri. Logarithmic-time link

path queries in a simple polygon. Int. J. Comput. Geometry Appl., 5(4):369–395,

1995.

[4] Boris Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon.

Algorithmica, 4(1):109–140, 1989.

[5] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. Handbook of Computa-

tional Geometry, 5:201–290, 2000.

[6] Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and

Delaunay Triangulations. World Scientific, 2013.

[7] Sang Won Bae and Kyung-Yong Chwa. Voronoi diagrams for a transportation

network on the Euclidean plane. Int. J. Comput. Geometry Appl., 16(2-3):117–144,

2006.

[8] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Compu-

tational Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa

Clara, CA, USA, 3rd edition, 2008.

[9] Sergei Bespamyatnikh. Computing homotopic shortest paths in the plane. J.

Algorithms, 49(2):284–303, 2003.

59

60 BIBLIOGRAPHY

[10] Bernard Chazelle. A theorem on polygon cutting with applications. In FOCS,

pages 339–349. IEEE Computer Society, 1982.

[11] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete &

Computational Geometry, 6:485–524, 1991.

[12] Danny Z. Chen. Efficient algorithms for geometric shortest path query problems.

In Panos M. Pardalos, Ding-Zhu Du, and Ronald L. Graham, editors, Handbook

of Combinatorial Optimization, pages 1125–1154. Springer New York, 2013.

[13] Danny Z. Chen, Rajasekhar Inkulu, and Haitao Wang. Two-point L1 shortest

path queries in the plane. In Siu-Wing Cheng and Olivier Devillers, editors,

Symposium on Computational Geometry, page 406. ACM, 2014.

[14] Danny Z. Chen, Kevin S. Klenk, and Hung-Yi Tu. Shortest path queries among

weighted obstacles in the rectilinear plane. SIAM J. Comput., 29(4):1223–1246,

2000.

[15] Yi-Jen Chiang and Joseph S. B. Mitchell. Two-point euclidean shortest path

queries in the plane. In Robert Endre Tarjan and Tandy Warnow, editors, SODA,

pages 215–224. ACM/SIAM, 1999.

[16] Francis Y. L. Chin, Jack Snoeyink, and Cao An Wang. Finding the medial

axis of a simple polygon in linear time. Discrete & Computational Geometry,

21(3):405–420, 1999.

[17] Richard Cole and Uzi Vishkin. The accelerated centroid decomposition technique

for optimal parallel tree evaluation in logarithmic time. Algorithmica, 3:329–346,

1988.

[18] Frank Dehne, Anil Maheshwari, and Ryan Taylor. A coarse grained parallel

algorithm for Hausdorff Voronoi diagrams. In ICPP, pages 497–504. IEEE

Computer Society, 2006.

[19] Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. The upper en-

velope of piecewise linear functions: Algorithms and applications. Discrete &

Computational Geometry, 4:311–336, 1989.

[20] Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. Computing homotopic

shortest paths efficiently. Comput. Geom., 35(3):162–172, 2006.

BIBLIOGRAPHY 61

[21] Michael T. Goodrich and Roberto Tamassia. Dynamic ray shooting and shortest

paths in planar subdivisions via balanced geodesic triangulations. J. Algorithms,

23(1):51–73, 1997.

[22] Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a

simple polygon. Journal of Computer and System Sciences, 39(2):126–152, 1989.

[23] Hua Guo, Anil Maheshwari, and Jörg-Rüdiger Sack. Shortest path queries in

polygonal domains. In Rudolf Fleischer and Jinhui Xu, editors, AAIM, volume

5034 of Lecture Notes in Computer Science, pages 200–211. Springer, 2008.

[24] John Hershberger. A new data structure for shortest path queries in a simple

polygon. Information Processing Letters, 38(5):231–235, 1991.

[25] John Hershberger and Jack Snoeyink. Computing minimum length paths of a

given homotopy class. Comput. Geom., 4:63–97, 1994.

[26] John Hershberger and Subhash Suri. A pedestrian approach to ray shooting:

Shoot a ray, take a walk. J. Algorithms, 18(3):403–431, 1995.

[27] John Hershberger and Subhash Suri. An optimal algorithm for euclidean shortest

paths in the plane. SIAM J. Comput., 28(6):2215–2256, 1999.

[28] Christian Icking, Rolf Klein, Lihong Ma, Stefan Nickel, and Ansgar Weißler.

On bisectors for different distance functions. Discrete Applied Mathematics,

109(1-2):139–161, 2001.

[29] Yi Jen Chiang, Franco P. Preparata, and Roberto Tamassia. A unified approach

to dynamic point location, ray shooting, and shortest paths in planar maps.

SIAM J. Comput., 25(1):207–233, 1996.

[30] Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture

Notes in Computer Science. Springer, 1989.

[31] Rolf Klein, Elmar Langetepe, and Zahra Nilforoushan. Abstract Voronoi diagrams

revisited. Comput. Geom., 42(9):885–902, 2009.

[32] Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. Randomized incremental con-

struction of abstract Voronoi diagrams. Comput. Geom., 3:157–184, 1993.

[33] Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006.

62 BIBLIOGRAPHY

[34] Der-Tsai Lee. Medial axis transformation of a planar shape. IEEE Trans. Pattern

Anal. Mach. Intell., 4(4):363–369, 1982.

[35] Der-Tsai Lee and Franco P. Preparata. Euclidean shortest paths in the presence

of rectilinear barriers. Networks, 14(3):393–410, 1984.

[36] Lihong Ma. Bisectors and Voronoi diagrams for convex distance functions. PhD

thesis, Fachbereich Informatik, FernUniversität Hagen, 2000.

[37] Joseph S. B. Mitchell. Shortest paths and networks. In Jacob E. Goodman and

Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry,

pages 607–641. CRC Press, Inc., Boca Raton, FL, USA, 2004.

[38] Joseph S. B. Mitchell, Valentin Polishchuk, and Mikko Sysikaski. Minimum-link

paths revisited. Comput. Geom., 47(6):651–667, 2014.

[39] Ketan Mulmuley. A fast planar partition algorithm, I. J. Symb. Comput.,

10(3/4):253–280, 1990.

[40] Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Networks. Cam-

bridge University Press, 2007.

[41] Evanthia Papadopoulou. Critical area computation for missing material defects

in VLSI circuits. IEEE Trans. on CAD of Integrated Circuits and Systems,

20(5):583–597, 2001.

[42] Evanthia Papadopoulou and Der-Tsai Lee. The Min-Max Voronoi diagram of

polygons and applications in VLSI manufacturing. In Prosenjit Bose and Pat

Morin, editors, ISAAC, volume 2518 of Lecture Notes in Computer Science, pages

511–522. Springer, 2002.

[43] Evanthia Papadopoulou and Der-Tsai Lee. The Hausdorff Voronoi diagram of

polygonal objects: a divide and conquer approach. Int. J. Comput. Geometry

Appl., 14(6):421–452, 2004.

[44] Raimund Seidel. A simple and fast incremental randomized algorithm for comput-

ing trapezoidal decompositions and for triangulating polygons. Comput. Geom.,

1:51–64, 1991.

[45] Michael Ian Shamos and Dan Hoey. Closest-point problems. In FOCS, pages

151–162. IEEE Computer Society, 1975.

BIBLIOGRAPHY 63

[46] Subhash Suri. A linear time algorithm with minimum link paths inside a simple

polygon. Comput. Vision Graph. Image Process., 35(1):99–110, July 1986.

